Land off Bullen's Green Lane, Colney Heath St Albans

Flood Risk Assessment and Drainage Strategy

August 2020

Contents

1	Introduction	07
2	Existing Site and Proposed Development	11
3	Flood Risk	15
	Risk of Flooding to the Development from Known Sources	19
	Risk of Flooding from the Proposed Development	21
4	Proposed Development Drainage Strategy	23
	Surface Water Drainage Strategy	25
	Discharge Strategy	27
	Foul Water Drainage Strategy	31
5	Summary and Conclusions	33

Appendices

Appendix A	Site Location Plan
Appendix B	Topographic Survey
Appendix C	Existing Drainage Plan
Appendix D	Illustrative Sketch Layout
Appendix E	Environment Agency - Flood Map for Planning
Appendix F	Environment Agency - Surface Water Flood Map
Appendix G	Paddock Geo Engineering Site Investigation Report Extracts
Appendix H	Thames Water - Wastewater Plan and Manhole Records
Appendix I	Environment Agency - Reservoir Flood Map
Appendix J	Thames Water Correspondence
Appendix K	Greenfield Calculations
Appendix L	Proposed Drainage Strategy

Appendix M Drainage Calculations

Report Reference

18770/FRA and DS

Revision History

Rev	Amendments	Prepared By	Checked By	Date
First Issue	N/A	YK	JGF	24/08/2019

Introduction

Introduction

The following paragraphs state the purpose of this document, and its constraints. A summary of existing and future site details; together with relevant pre-planning correspondence is also provided.

- 1.1 This Flood Risk Assessment (FRA) and Drainage Strategy has been prepared by Woods Hardwick Infrastructure LLP on behalf of Canton Ltd; in support of an Outline Planning Application for a proposed residential development comprising up to 100 residential dwellings on a site known as 'Land off Bullen's Green Lane, Colney Heath'. A copy of the Site Location Plan is provided in Appendix A.
- 1.2 The application boundary for the site covers an area of approximately 5.25ha of undeveloped land. In terms of flood risk, the proposed development is situated in Flood Zone 1, land which has less than a 1 in 1,000 annual probability of river or sea flooding.
- 1.3 Although the site is not shown as being at risk of flooding on the EA mapping, this report has been prepared on the basis that the total site area exceeds 1ha.
- 1.4 This document has been written in accordance with the guidance contained within the Flood Risk and Coastal Change section of the Government's Planning Practice Guidance (FRCC, PPG).
- 1.5 This FRA concludes that the proposed development will not lead to the impedance of flood flows and will not increase the risk of flooding on the site itself, adjacent properties or to third parties situated either upstream or downstream of the site.
- 1.6 This document includes a Surface Water Drainage Strategy that identifies a suitable sustainable strategy for the disposal of surface water from the proposed development site that conforms with the guidance contained within the following documents:
 - CIRIA C753 SuDS Manual (2015)
 - Hertfordshire Council's LLFA Summary Guidance for Developers
- 1.7 The drainage principles were agreed during a pre-application meeting with the Lead Local Flood Authority (LLFA) in July 2020.
- 1.8 The proposed Drainage Strategy is based on a maximum allowance of 40% climate change in accordance with the Supplementary Planning Document for Sustainable Drainage Systems.
- 1.9 A suitable foul water outfall by way of direct connection to Thames Water assets located north east of the site in Bullens Green Lane has also been identified for the proposed development.

1.10 From the findings of this report, the development proposals are considered appropriate for the site location; therefore, should be fully supported through the Planning process in terms of Flood Risk, Foul and Surface Water Drainage.

Existing Site and Proposed Development

Existing Site and Proposed Development

The following paragraphs provide detail on the existing and proposed future residential development site; in relation to location, land uses, topography, as well as accessibility by travel and utilities.

- 2.1 The proposed development site, which sits within both St Albans District Council and Welwyn Hatfield Borough Council, is located in the eastern part of Colney Heath, approximately 3km south west of Hatfield Town Centre and over 6km south east of St Albans Town Centre.
- 2.2 By road, Colney Heath is accessible from the A1(M) via the A414 North Orbital Road at Junction 3. The A414 North Orbital Road runs south of St Albans and provides a link between the A1 and M1. Colney Heath is also accessible from the M25 Junction 22 via Coursers Road.
- 2.3 The existing site covers an area of approximately 5.25ha of undeveloped agricultural land.
- 2.4 The site is bounded by Bullen's Green Lane and Fellows Lane to the east and south, respectively. Roestock Park abuts part of the western site boundary whilst existing residential properties abut the northern site boundary.
- 2.5 A Topographic Survey of the site was carried out by Woods Hardwick in June 2020. During the survey, information was recorded on the location and type of land features observed, including type of surface finishes, land boundaries, access routes, existing building outlines, vegetation and the geometric constraints of adjacent open channel ditches. All surveyed elevations were recorded at heights in metres above Ordnance Datum (mAOD). Ground levels and spot levels are also indicated on the drawing where they were recorded onsite. A copy of the Topographical Survey is provided in **Appendix B.**
- 2.6 In terms of existing drainage utilities, the Thames Water Wastewater Plans identifies the presence of existing Thames Water foul and surface water sewers serving the residential properties to the north and south of the site. There are no existing public sewers identified within the site boundary.
- 2.7 The topographical survey identifies existing sections of ditches adjacent to the site boundaries. However, the ditches do not appear to have an outfall beyond the site. It is considered likely that the ditches would have been put in place to drain the site with surface water eventually soaking into the ground. A drawing showing the existing drainage regime has been prepared and provided in **Appendix C**.
- 2.8 A Drainage Survey was carried out by Midland Survey Ltd in July 2020, following a pre-application meeting with the LLFA. The surveyors traced the Thames Water (TW) surface water networks to the north and south west of the site. Whilst the surveyors were unable to trace the entire routes due to third party land they confirmed it was highly likely that the network to the north discharges to the existing ditch north of Roestock Lane and the network to the south west discharges to the River Colne located west of the site.

- 2.9 The OS map indicates there is an existing drain which crosses the site. However, both the topographical and subsequent drainage survey could not find any evidence of this drain.
- 2.10 Notwithstanding this, the Ground Investigation Report prepared by Paddock Geo Engineering notes that the historic land drain running across the centre of the site was infilled in the last twenty years. A plastic suspected land drain pipe was observed at 0.9m depth.
- 2.11 Development proposals comprise up to 100 residential dwellings, with associated infrastructure. The main vehicular access will be provided via a new access road off Bullens Green Lane. A copy of the Illustrative Sketch Layout is provided in **Appendix D**.

Flood Risk

Flood Risk

The following paragraphs will identify whether or not there are any flood risks associated with the future development which may affect the proposals impact on the surrounding environment.

- 3.1 Following the increased frequency of flooding during recent years, much work has been undertaken at a national level to assess the relationship between new development and flood risk. This work resulted in the publication of Planning Policy Statement 25 (PPS25) in early 2007 with an update being released in March 2010.
- 3.2 Alongside the release of the National Planning Policy Framework in March 2012 the Technical Guidance to the NPPF (TGNPPF) was released serving as a flood risk-based addendum to the national planning guidance. These documents replaced PPS25; however, many of the principles set out in PPS25 remain relevant. The TGNPPF has since been replaced by the Planning Practice Guidance which continues to follow the same principles.
- 3.3 Table 1 of the FRCC, PPG seeks to define Flood Risk Zones. An extract of this table is shown in Figure 3.1 which follows.
- 3.4 The definition of the flood zones noted in Figure 3.1, reaffirms the guidance and categorisation included within PPS25 and TGNPPF.
- 3.5 Table 2 of the FRCC, PPG defines 'Flood Risk Vulnerability Classification'. Residential dwellings are classified under the 'More Vulnerable' category, as such the proposed development is considered to be a 'More Vulnerable' type of development.
- 3.6 The Environment Agency (EA) Flood Map demonstrates that the site lies within Flood Zone 1 and is therefore classified as having less than a 1 in 1,000 annual probability of flooding from rivers or seas. A copy of the EA Flood Map covering the immediate surrounding area for the proposed development is shown in **Appendix E**.
- 3.7 Table 3 of the FRCC, PPG compares the suitability of a development within a particular Flood Zone based on its corresponding Flood Risk Vulnerability Classification. Developments like the proposed which are classified as 'More Vulnerable', are deemed appropriate for development within Flood Zone 1. Therefore, there is no need to carry out a Sequential Test or Exception Test.

Flood Zone	Definition
Zone 1 Low Probability	Land having a less than 1 in 1,000 annual probability of river or sea flooding. (Shown as 'clear' on the Flood Map – all land outside Zones 2 and 3)
Zone 2 Medium Probability	Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding. (Land shown in light blue on the Flood Map)
Zone 3a High Probability	Land having a 1 in 100 or greater annual probability of river flooding; or Land having a 1 in 200 or greater annual probability of sea flooding.(Land shown in dark blue on the Flood Map)
Zone 3b The Functional Floodplain	This zone comprises land where water has to flow or be stored in times of flood. Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency. (Not separately distinguished from Zone 3a on the Flood Map)

Figure 3.1: Flood Zone Definitions - Planning Practice Guidance Extract

Risk of Flooding to the Development from Known Sources

3.8 Notwithstanding the above, presented below is a summary and analysis of the potential for the site to flood from known sources.

Flooding from Rivers and/ or Watercourses

- 3.9 The topographical survey identifies sections of existing ditches adjacent to the site boundaries.
- 3.10 The nearest EA watercourse is the River Colne, which is located over 0.5km south west of the site.
- 2.12 The EA Flood Map enclosed in **Appendix E** shows that the proposed development land is situated in Flood Zone 1, land which has less than a 1 in 1,000 annual probability of river or sea flooding.

Flooding from the Sea

3.11 The nearest sea to the site is the North Sea, which is located some 90km to the east. Given this distance and the fact that the site lies above 74m AOD; the proposed residential scheme is not considered to be at risk of flooding from this source.

Flooding from Land

- 3.12 The potential for overland flows needs to be considered to ensure that neither the development nor adjacent land and/ or property, including that which may be under the responsibility of a third party is placed at an unacceptable risk of flooding.
- 3.13 From the EA Surface Water Flood Map for the site, which is enclosed in **Appendix F**, parts of the site are shown to be at low to high risk of surface water flooding. The area associated with high risk of surface water flooding on site is significantly small. Only areas adjacent to the north eastern and south western site boundaries are identified to be at medium risk of surface water flooding. In both scenarios flood depts are below 300mm.
- 3.14 It would appear that the surface water flooding shown on the EA maps is due to surface water runoff emanating on the site following existing flow route/natural depressions towards the lower areas within the site.

- 3.15 It should be noted that, the SFRA for the area did not identify any historic surface water flood incidents in the vicinity of the site.
- 3.16 Notwithstanding the above, any surface water flows which may emanate on site will be managed within the drainage strategy following the development of the site.

Flooding from Groundwater

- 3.17 A Ground Investigation (GI) for the site was carried out by Paddock Geo Engineering (PGE) in July 2020, which included groundwater monitoring and Infiltration testing using the BRE Digest 365 methodology in machine excavated pits. A copy of the relevant extracts from the PGE Report Trial is included in **Appendix G**.
- 3.18 From the results of the intrusive ground sampling carried out by PGE; it can be concluded that the sub-strata composition of the site typically consists of topsoil/made ground underlain by Lowestoft Formation.
- 3.19 The report also notes that Groundwater was encountered within two of the shallow trial pits and within four of the six boreholes undertaken at depth of 0.9m to 4m, typically as seepages within the sand band and pockets of gravel. Subsequent groundwater monitoring of the standpipes indicates groundwater levels of between 1.40m and 4.30m.
- 3.20 The Level 1 Strategic Flood Risk Assessment (SFRA) for the area shows that the site does not lie within an area susceptible to groundwater flooding. In addition, the SFRA did not identify any historic groundwater flooding incidents in the vicinity of the site.
- 3.21 Based on the above information, it is anticipated that groundwater flooding should not be an issue to the proposed development.

Flooding from Sewers

3.22 A copy of the Thames Water Wastewater Plan illustrating the site extents and the immediate surrounding areas on Ordnance Survey (OS) mapping; together with approximate locations of Thames Water assets is enclosed in **Appendix H**.

- 3.23 From the plan, it can be seen that there are no Thames Water assets located within the site extent. However, Thames Water Wastewater Plans identifies the presence of existing Thames Water foul and surface water sewers serving the residential properties to the north and south of the site.
- 3.24 As previously mentioned, the OS map indicates there is an existing drain which crosses the site. However, it is noted this was infilled in the last twenty years.
- 3.25 Based on the evidence provided above, the proposed site is not considered to be at risk of flooding from this source.

Flooding from Reservoirs, Canals and Other Artificial Sources

- 3.26 The EA Reservoir Flood Map was acquired by Woods Hardwick Infrastructure LLP on the 13th July 2020 from the EA's website. A copy of this mapping is enclosed in **Appendix I**. No part of the site or any immediate neighbouring land is shown to be at risk of flooding form reservoirs.
- 3.27 It should be noted that an occurrence of flooding from reservoirs is considered by the EA to be extremely rare. There has been no loss of life in the UK from reservoir flooding since 1925.

Risk of Flooding from the Proposed Development

3.28 Presented below is a summary and analysis of the potential for the site to exacerbate the risk of flooding to third parties both upstream and downstream.

Encroachment onto Floodplain

3.29 As outlined above, the site does not lie within the floodplain, there is therefore no risk of encroachment upon the floodplain.

Impedance of Flood Flows

3.30 As the site lies out of the floodplain there is no risk of the site impeding flood flows.

Contribution of Flood Flows by Development Drainage

- 3.31 As previously mentioned, the existing site covers an area of approximately 5.25ha of undeveloped open land.
- 3.32 The proposed development comprises up to 100 residential dwellings with associated infrastructure such as access roads, footways, and car parking. These elements will all contribute to the development's surface water discharge.
- 3.33 If considered appropriate at the detailed design stage, flooding routing measures will be incorporated to ensure that flood waters in excess of those for which the site has been designed to accommodate, will be routed away from the more vulnerable areas of the site.
- 3.34 The surface and foul water disposal strategies for the site are described in greater detail in the following 'Chapter 4 Proposed Development Drainage Strategy'.

Climate Change

- 3.35 There is an increasing body of scientific evidence that suggests that the global climate is changing as a result of human activity. Past, present and future emissions of greenhouse gases are expected to cause significant climate change during this century.
- 3.36 The nature of climate change will vary for the UK. Projections of future climate change indicate that more frequent short-duration, high-intensity rainfall and more frequent periods of long-duration rainfall can be expected. These kinds of changes will have implications on river-flooding and also localised flash flooding.
- 3.37 The Planning Practice Guidance requires developments to consider the potential impacts of climate change. In February 2016 the EA released new guidance titled 'Flood risk assessments: climate change allowances' (FRA:CC), in which the peak rainfall intensity allowance in small and urban catchments is assessed.
- 3.38 Considering the above, the climate change allowance that the proposed development's drainage strategy will be based on, is set at a value of +40% ('Upper End' value i.e. 90th Percentile, taken from Table 2 of the FRA: CC, representing the total potential change anticipated for 2070 to 2115).

Proposed Development Drainage Strategy

Proposed Development Drainage Strategy

The following paragraphs will provide detail on the proposed site generated foul and surface water disposal methods, design criteria, maintenance regimes and potential third-party legal agreements.

4.1 In addition to ensuring that the development is not at risk of flooding from external sources, it is also important to ensure that the scheme itself does not exacerbate flood risk for others. It is therefore essential that the arrangements for storm and foul water disposal are fully assessed to guarantee that the effects are mitigated and that there will be no impact on the existing land drainage regime.

Surface Water Drainage Strategy

- 4.2 All of the recent guidance on the arrangements for storm water disposal from new developments has encouraged the application of a hierarchy for surface water disposal. This has now been formalised in the Building Regulations Part H. The hierarchy is also the basis of the advice on surface water disposal recommended by Bedford Borough Council, in their role as Lead Local Flood Authority (LLFA) in the BBC publication, 'Supplementary Planning Document for Sustainable Drainage Systems (February 2018).
- 4.3 The first choice for surface water disposal which should be pursued is via infiltration. Only where it has been determined that the ground conditions are not suitable should the second choice of disposal to a ditch and/ or watercourse be considered. If there is no alternative the third and last choice of disposal to the public sewer can be considered.

Method of Surface Water Discharge

Infiltration

- 3.39 Infiltration testing was carried out onsite by PGE for 7 trial pits in accordance with the BRE 365 methodology. The results indicate that significant infiltration was not noted within any of these trial pits.
- 3.40 It is therefore considered that the use of infiltration techniques such as traditional soakaways will not be suitable for surface water discharge at the proposed site. For full copies of the infiltration data and trial pit logs, see **Appendix G**.
- 3.41 It is also noted that there is an Affinity Water abstraction point immediately north west of the site, therefore infiltration is not appropriate in this area.

Ditch and/ or Watercourse

- 4.4 As previously mentioned, the nearest watercourse to the site is the River Colne, which is located over 0.5km south west of the site.
- 4.5 The topographical survey identified existing sections of ditches adjacent to the site boundaries. However, the ditches are too shallow to be a feasible solution and they do not appear to have an outfall beyond the site.
- 4.6 In light of the above, it is therefore considered that surface water disposal to a ditch/watercourse will not be a feasible option.

Discharge to Public Sewer

- 4.7 In accordance with the hierarchy for surface water disposal, the next option to be explored is disposal to the public sewer.
- 4.8 It is therefore proposed to discharge surface water runoff from the development site to the existing Thames Water public surface sewer located in Bullens Green Lane, north east of the site.
- 4.9 Thames Water have already confirmed they would accept a connection to the public surface water sewer at MH1150 in Roestock Gardens, at a maximum rate of 9.31/s which is equivalent to the previously calculated QBAR rate. However, a new connection at this manhole would require crossing third party land. As such, Woods Hardwick have written to Thames Water, requesting a new point of connection at MH3010 in Bullens Green Lane, north east of the site. Their response is currently awaited. Copies of the correspondence with Thames Water are contained in **Appendix J**.
- 4.10 At the detailed design stage, the proposed surface water network will be designed and tested within the relevant software package, to ensure that surface water flows generated from the site will not exceed this prescribed rate during a 1 in 100 year plus 40% climate change rainfall event.

Discharge Strategy

<u>Rainfall Data</u>

4.11 The Flood Estimation Handbook (FEH) methodology has been used in order to determine the requirements of the drainage network.

Runoff Rate

4.12 The impermeable area of the site has been calculated from the Illustrative Sketch Layout. This impermeable area comprises surfaces occupied by the proposed houses, garages, private drives, the access roads including adjacent footpaths.

Attenuation Volume Requirement

- 4.13 The site is currently undeveloped, therefore the proposed development will generate an increase in impermeable area. Based upon the illustrative layout drawing submitted with the application, the proposed development would generate an impermeable area of 3.15ha.
- 4.14 Woods Hardwick recently contacted Thames Water, requesting confirmation that they would accept a new connection to the public sewer network in Bullens Green Lane, north east of the site. Their response is currently awaited.
- 4.15 Notwithstanding the above, a minimum rate of 5l/s has been used for the storage calculations at this stage. This is considered to be a robust approach as the minimum rate is lower than the calculated QBAR rate for the site; 9.6l/s. A copy of the Greenfield Calculation is provided in Appendix K.
- 4.16 It is necessary to ensure that sufficient attenuation is provide to accommodate the runoff from 3.15ha of impermeable surfacing during 1 in 100-year (+40% climate change) storm event. The drainage calculations demonstrate that the proposed attenuation basin is capable of accepting flows from the 100 year rainfall event, including 40% allowance for climate change.
- 4.17 It should be noted that the final discharge rate and storage volume requirement will be dependent upon the Thames Water's response and the final impermeable area. At the detailed design stage, calculations will be re-run and the strategy will be refined as necessary. Depending upon the final proposals it may therefore be necessary to provide additional storage volumes.

Method of Attenuation

4.18 In accordance with current guidelines and best practice, the Developer's best endeavours will be made to ensure that appropriate Sustainable Urban Drainage Systems (SuDS) are used wherever practicable. There are a number of primary methods available, the appropriateness of which has been considered and summarised in Table 4.1 below;

SuDS System	Feasibility	Comments
Green Roofs	Х	Cost is likely to adversely affect the scheme's viability.
Permeable Paving	\checkmark	Lined permeable paving is proposed within the private areas
		for surface water treatment.
Soakaways X Infiltratio		Infiltration testing confirm that the use of soakaways is not
		viable for the proposed development.
Rainwater	\checkmark	Feasible and will be utilised where practicable, although not
Harvesting		accounted for within currently proposed drainage strategy or
		attenuation calculations.
Swales	\checkmark	Swales are proposed alongside to the main road for surface
		water treatment.
Attenuation Basin	\checkmark	An attenuation basin is currently proposed on this scheme to
		provide surface water storage and treatment.
Geo-cellular	Х	Not currently proposed as the proposed attenuation basin
Storage Crates		offers a more sustainable solution.

Table 4.1: SuDS Feasibility Consideration

- 4.19 Based upon the assessment above, which takes into account the topography of the site and the underlying conditions, it is proposed to provide surface water storage within the proposed attenuation basins. The attenuation basins, which will be placed at the north western extent of the site, will provide a total of 2092m³ of surface water storage. The south western basin, will be constructed to a maximum depth of 1.5m, whilst the north eastern basin is only 0.6m deep and acts as an overflow for the main pond. Both basins will have side slopes of 1 in 3 and at 0.6m depth, the north eastern basin is expected to be dry most of the time and will provide a multi-functional space.
- 4.20 In addition to the above, swales are proposed alongside the main road, and permeable paving within private areas for surface water treatment. These features are currently not accounted for within the drainage calculations. The Proposed Drainage Strategy Drawing and associated Flow Calculations are provided in **Appendix L and M**, respectively.

Surface Water Conveyance

- 4.21 Surface water runoff from the proposed impermeable areas will generally be routed towards the surface water pumping station in the northern extent of the site via a gravity fed piped network.
- 4.22 Two offline basins will be located in the north eastern extent of the site to provide surface water storage.
- 4.23 The swine road will drain 'over the edge' or via kerb outlets into the shallow swales alongside the carriageway.
- 4.24 From the pumping station, surface water flows will be pumped towards the existing public surface water sewer in Bullens Green Lane, north east of the site. The pumping station will also act as a flow control to ensure that discharge rates do not exceed the discharge rate prescribed by Thames Water.
- 4.25 As previously mentioned, the final discharge rate and storage volume will be dependent upon the Thames water's response and the final impermeable area. At the detailed design stage, the proposed surface water sewer network will be tested against a 1 in 100-year (+40% climate change) rainfall event using the XP Solutions MicroDrainage or Flow software, where the discharge rate at the outfall position must be shown to not exceed the agreed rate.
- 4.26 Notwithstanding the above, the current calculations are based on a minimum rate of 5l/s, which is lower than the QBAR rate.

Surface Water Drainage Maintenance

- 4.27 The arrangements for further maintenance of the surface water drainage system needs to be fully considered and, in that respect, it is anticipated that the onsite piped drainage network would be adopted by Thames Water Services Ltd through a Section 104 Agreement (Water Industry Act 1991).
- 4.28 It is anticipated that the attenuation basins, swales and permeable paving will be maintained by a management company.
- 4.29 A summary of the likely maintenance requirements for the proposed drainage network is provided in Table 4.2 below.

Table 4.2: Recommended Maintenance for Swales / Attenuation Basins

	Swales / Attenuation Basin		
Monitoring		Frequency	Responsibility
To be visually inspected after heavy rainfall events to ensure they are free of debris and litter.		As required	Management Company
Regular Maintenance			
Litter and debris remov	al from the site	Monthly	Management Company
Amenity grass cutting a	t 35-50mm	As required	
Inspect and clear inlets and overflows	, outlets, control structures	Monthly	
Occasional Maintenanc	e		
Remove Leaf Accumula	tion	As required	Management Company
Remove sediments from	n inlets and structures	As required	
Remedial Work			
Inspect and repair dama and overflows	age to inlets, outlets, banks	As required	Management Company

4.1 It should be noted that the maintenance schedule document should be considered indicative only. The frequency and type of maintenance tasks to be carried out should be reviewed as necessary to ensure that the schedule remains relevant to the nature and location of the proposed residential development.

Foul Water Drainage Strategy

- 4.39 A Pre-Planning Enquiry was submitted to Thames Water, requesting confirmation that the existing foul network to the north east of the site has sufficient capacity to accommodate the foul discharge from the proposed development, via a pumped connection to the public foul network in Bullens Green Lane, north east of the site. In their response dated 20th August 2020, Thames Water confirmed that they would accept a new connection at MH3011 in Bullens Green Lane at 2.3l/s.
- 4.40 A suitable foul sewer network to discharge the residential development, will be designed in accordance with Thames Water's adoptable standards, providing a direct point of connection between the development site and the agreed Thames Water foul outfall. Further details of this design will be provided at the detailed design stage.
- 4.41 In accordance with relevant drainage policy, Thames Water are obliged to accept foul water flows from a proposed development, subject to the site receiving planning consent. In anticipation that such a consent will be granted for the proposed residential scheme, it is expected that Thames Water will make the necessary arrangements to ensure that the required provision within their public foul sewer network and treatment works will be available at the time that the Applicant wishes to connect the site's foul sewers to the designated outfall.

Foul Water Drainage Maintenance

4.42 In anticipation that the proposed residential development will be connected to the Thames Water public foul sewer network; it is considered reasonable to expect that Thames Water Services will act in their full capacity as the wastewater provider for the local area, to ensure that maintenance of their public sewers will be carried out as required from the point at which the existing private sewer outfalls connect to the public sewer network.

Summary and Conclusion

Summary and Conclusions

The following paragraphs summarise the findings of this Flood Risk Assessment and Drainage Strategy. Details of foul and surface water outfalls, SuDS features and legal agreements are also provided.

- 5.1 This Flood Risk Assessment (FRA) and Drainage Strategy has been prepared by Woods Hardwick Infrastructure LLP on behalf of Canton Ltd; in support of an Outline Planning Application for a proposed residential development comprising up to 100 residential dwellings on a site known as 'Land off Bullens Green Lane, Colney Heath'.
- 5.2 The site comprises an area of approximately 5.25 ha and is shown on the EA's Flood map for planning as lying within Flood Zone 1.
- 5.3 All potential sources of flooding to the proposed development have been considered and it has been demonstrated that the site will not be at any significant risk of flooding. Access and egress to the site will be maintained during extreme storm events.
- 5.4 It has been demonstrated that the proposed development will not exacerbate the risk of flooding to third parties either upstream or downstream from the site.
- 5.5 The Surface Water Drainage Strategy has been developed in accordance with the hierarchy for sustainable surface water disposal. The results from the intrusive ground investigation confirm that the underlying soil conditions are not suitable for infiltration techniques. Conveyance of surface water to the nearest ditch or watercourse was also considered; however, the adjacent ditches do not appear to have an outfall beyond the site. As such, in this particular instance it is considered more appropriate to discharge surface water runoff from the development site to the existing Thames water public sewer located in Bullens Green Lane, north east of the site.
- 5.6 Thames Water have already confirmed they would accept a connection to the public surface water sewer at MH1150 in Roestock Gardens, at a maximum rate of 9.3l/s which is equivalent to the previously calculated QBAR rate. However, a new connection at this manhole would require crossing third party land. As such, Woods Hardwick have written to Thames Water, requesting a new point of connection at MH3010 in Bullens Green Lane, north east of the site. Their response is currently awaited.
- 5.7 At this stage, a minimum rate of 5l/s has been used for the storage calculations. This is considered to be a robust approach as the minimum rate is lower than the calculated QBAR rate for the site; 9.6l/s. However, it should be noted that the final discharge rate and storage volume requirement will be dependent upon the Thames Water's response and the final impermeable area. At the detailed design stage, calculations will be re-run and the strategy will be refined as necessary. Depending upon the final proposals it may therefore be necessary to provide additional storage volumes.

- 5.8 Surface water runoff from the site will generally be routed towards the surface water pumping station in the northern extent of the site via a gravity fed piped network. From here, surface water flows will be pumped towards the existing public surface water sewer in Bullens Green Lane, north east of the site. Two offline basins will be located in the north eastern extent of the site to provide surface water storage. In addition, swales are proposed alongside the main road, and permeable paving within private areas for surface water treatment.
- 5.9 It is proposed to discharge the site's foul flows, via a pumped connection, to the public foul network in Bullens Green Lane, north east of the site.
- 5.10 At the detailed design stage, a suitable foul sewer network will be designed to demonstrate the conveyance of foul flows to the designated Thames Water foul outfall. Following the detailed design of this sewer network, an appropriate means of connection to the public sewer will be progressed via a Section 106 (Water Industry Act 1991) Agreement. In turn, the adoption of any element of proposed foul sewer will be offered for Thames Water adoption will be progressed via a Section 104 (Water Industry Act 1991) Agreement.
- 5.11 From the information provided within this report, it is concluded that there is no reason in terms of drainage or flood risk why the residential development proposed at 'Land off Bullen's Green Lane, Colney Heath'; should not be fully supported through the planning process.

NOTES

- 1. Contractors must check all dimensions on site. Only figured dimensions are to be worked from. Discrepancies must be reported to the Architect or Engineer before proceeding. © This drawing is copyright.
- Reproduced from OS Sitemap

 by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office.
 © Crown copyright 2008. All rights reserved. Licence number 100007126.

17981-1002 Roundhous	e Farm,	Roes	stocl	k Lar	ne
17981-1002		REV	D		
			P		
RR		СНК	TF		
1:1250@ A2		DATE	MA	Y 20	
(П	INFORMATION AS BUILT	4		TENDE	R
		a	UNI	cno	DATE
	N ON 1:1250@ A2	N / INFORMATION ON AS BUILT 1:1250@ A2 RR	N ' INFORMATION ON AS BUILT 1:1250@ A2 DATE RR CHK	N DRN ' INFORMATION ON AS BUILT 1:1250@ A2 DATE MA RR CHK TF	N DRN CHD ' INFORMATION ITENDED ON ASBUILT 1:1250@ A2 DATE MAY 20 RR CHK TF

BEDFORD : HEAD OFFICE

15-17 Goldington Road

T: +44 (0) 1234 268862

Bedford MK40 3NH

BIRMINGHAM

Fort Dunlop, Fort Parkway T: +44 (0) 121 6297784

ONLINE: mail@woodshardwick.com | woodshardwick.com

Birmingham B24 9FE

PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING THIS DRAWING

- Contractors must check all dimensions on site. Only figured dimensions are to be worked from. Discrepancies must be reported to the Architect or Engineer before proceeding.
 © This drawing is copyright.
- 2. Reproduced from OS Sitemap ® by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office. © Crown copyright 2008. All rights reserved. Licence number 100007126.

Appendix C Existing Drainage Plan

1. Contractors must check all dimensions on site. Only figured dimensions are to be worked from. Discrepancies must be reported to the Architect or Engineer before proceeding. © This drawing is copyright.

2. Reproduced from OS Sitemap ® by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office. © Crown copyright 2008. All rights reserved. Licence number 100007126.

3. Until technical approval has been obtained from the relevant authorities, all drawings are issued as preliminary and not for construction. Should the Contractor commence site work prior to approval being given it is entirely at his own risk.

SAFETY, HEALTH AND ENVIRONMENTAL

In addition to the hazards, risks normally associated with the type of work detailed on this drawing, note the following significant risks and information.

Construction:

1. There is an existing HV cable which crosses the site.

1 5 10 15 25

PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING THIS DRAWING

Appendix D Illustrative Sketch Layout

NOTES

- 1. Contractors must check all dimensions on site. Only figured dimensions are to be worked from. Discrepancies must be reported to the Architect or Engineer before proceeding. © This drawing is copyright.
- Reproduced from OS Sitemap ® by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office. © Crown copyright 2008. All rights reserved. Licence number 100007126.

DRAFT

D	Redline Bo	undary updated ccess location.	ry and	AJS	TF	13.08.2020		
REV	DESCRIPTI	ON				DRN	CHD	DATE
	PRELIMINA	RY		INFORMATIO	N		TENDE	R
	CONSTRUC	TION		AS BUILT				
SCA	LE	1:1000 @	A2		DATE	Jul	y 202	0
DRA	WN	AJS			СНК	TF		
DRA	WING NO.	17981/10	05		REV	E		
TITI	Land North of Fellows Colney Heath							
DET	Proposed Illustrative L						t	

BEDFORD : HEAD OFFICE 15-17 Goldington Road

Bedford MK40 3NH

T: +44 (0) 1234 268862

BIRMINGHAM Birmingham B24 9FE T: +44 (0) 121 6297784

ONLINE: mail@woodshardwick.com | woodshardwick.com

Fort Dunlop, Fort Parkway

PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING THIS DRAWING

Appendix E

Environment Agency - Flood Map for Planning

Flood map for planning

Your reference 18770

Location (easting/northing) 521199/205881

Created **12 Jul 2020 23:47**

Your selected location is in flood zone 1, an area with a low probability of flooding.

This means:

- you don't need to do a flood risk assessment if your development is smaller than 1 hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1 hectare or affected by other sources of flooding or in an area with critical drainage problems

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

The Open Government Licence sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

Appendix F

Environment Agency - Surface Water Flood Map

Extent of flooding from surface water

Appendix G

Paddock Geo Engineering Site Investigation Report Extracts

Land off Fellows Lane, Colney Heath, Hertfordshire, AL4 0QQ

GROUND INVESTIGATION

Canton Ltd

July 2020

P20-164gi

Milton Keynes: The Log Cabin, Manor Farm, Whaddon Road, Newton Longville, Milton Keynes, MK17 0AU Swindon/Oxford: 21 Tyrell Close, Stanford in the Vale, Oxon, SN7 8EY T: 44 (0) 1908 764032 M: 44 (0) 7377 422528 E: matt@paddockgeoengineering.co.uk W: www.paddockgeoengineering.co.uk

> Company Number: 8613165 VAT Number: GB 166 8087 72

Exploratory Point Location Plan

Land off Fellows Lane, Colney Heath, Hertforshire, AL4 0QQ.

Canton Ltd

July 2020

Not to scale. All positions are approximate. Based on proposed plan provided by the client.

PAC	DOC	K				Site		N	umb	er
GEO E	NGINEERIN	NG				Land off Fellows Lane, Colney Heath, Hertfordshire, AL4 0QQ		'	ws	1
Excavation M Percussion L Techniques	Method iner Sampling	Dimens	ions	Ground	Level (mOD)	Client Canton Ltd		J N P	ob umb 20-1	er 64
		Locatio	n	Dates 17	7/06/2020	Engineer MC		S	heet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.10 0.70 0.80 1.00-1.45 1.20 1.60 2.00-2.45 2.20 2.60 3.00-3.45 3.20 3.70 4.00-4.45 4.20 4.60 4.60	C SV 31kPa D C SPT(C) N=13 SV 70kPa D SPT(C) N=21 D SPT(C) N=22 SV 62kPa D SV 81kPa D SPT(C) N=9 D SV 42kPa D		3,2/2,3,4,4 3,4/5,4,6,6 2,3/5,6,5,6 Water strike(1) at 4.00m. 2,1/2,3,2,2			Scrub vegetation onto grey silty gravelly SAND with occasional rootlets. Gravel is fine to coarse angular to sub-rounded coal, flint, and sandstone. (WEATHERED LOWESTOFT FORMATION) Firm orange brown mottled grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse angular to sub-rounded coal, flint, and sandstone. (WEATHERED LOWESTOFT FORMATION) Firm orange brown mottled grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse angular to sub-rounded coal, flint, and sandstone. (WEATHERED LOWESTOFT FORMATION) Loose orange and red brown occasionally mottled grey and black clayey slightly SAND. (WEATHERED LOWESTOFT FORMATION) Firm grey mottled orange brown variably silty CLAY and silty SAND. (LOWESTOFT FORMATION) Complete at 5.00m		Σ1		
Remarks Monitoring st Groundwater	andpipe installed up encountered within	on compl sand bar	etion. d at 4.0m depth.				Scale (approx) 1:50 Figure M	No.	ogge y SF	ed

PADDOCK					Site Land off Fellows Lane, Colney Heath,		N	umb	er	
GEO E	Method	Dimens	sions	Ground	Level (mOD)	Hertfordshire, AL4 0QQ Client		J.	ob	Z
Percussion Techniques	Liner Sampling					Canton Ltd		P	'20-1	64
		Locatio	n	Dates 1	7/06/2020	Engineer MC		S	heet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.20 0.70 0.80 1.00-1.45 1.20 1.60 1.80 2.00-2.45 2.20 2.60 2.80 3.00-3.45 3.20 3.80 4.00-4.45 4.20 4.60 4.80	C D SPT(C) N=18 D SV 172kPa D SPT(C) N=22 D SV 96kPa D SPT(C) N=27 D SV 86kPa D SV 86kPa D		3,3/3,4,5,6 4,5/5,6,5,6 4,4/5,7,8,7 9,8/8,8,5,8		(0.40) 0.40 (2.00) (2.00) (2.00) (0.90) (0.90) (0.60) 5.00	Scrub vegetation onto grey silty gravelly SAND with occasional rootlets. Gravel is fiint. (TOPSOIL Very stiff brown slightly sandy slightly gravelly CLAY with roots. 50mm diameter root at 0.6m depth. Gravel is fine to coarse angular to sub-rounded fiint and coal. (WEATHERED LOWESTOFT FORMATION) from 1.0m depth, becoming orange brown mottled grey. Firm grey mottled orange brown slightly sandy silty CLAY. (WEATHERED LOWESTOFT FORMATION) Orange brown, brown and grey clayey SAND. (WEATHERED LOWESTOFT FORMATION) from 4.0m depth, becoming slightly gravelly. Gravel is fine and angular flint. Stiff dark grey silty CLAY. (LOWESTOFT FORMATION) Complete at 5.00m				
Remarks No groundw Monitoring	vater encountered.		letion				Scale (approx)	L	ogge y	∍d
	יישוואט וויזימוופט מו	ion compi					1:50		SF	
							Figure N P20-1	lo. 164.\	WS2	2

Exercision Method Predmises Dimension Grand Line Fighter Lanc, Carboy Heath. International, Autor Lanc, Carboy Heath. Job Description	DAD	2000					Site		N	umbor
Exercision Hendor Predmission	GEO E	NGINEERIN	VG				Land off Fellows Lane, Colney Heath, Hertfordshire, AL4 0QQ			WS3
Processon with the semiclastic semiclasti semiclastic semiclasti semiclastic semiclastic se	Excavation	Method	Dimens	ions	Ground	Level (mOD)	Client		J	ob umber
Location Data Printing Print Prin	Percussion L Techniques	iner Sampling					Canton Ltd		P	20-164
Profit Sample / Test Year Learn bit / Field Records ArdS Description Learn bit / Field Records Instrument of the performance of the perfo			Locatio	'n	Dates 17	7/06/2020	Engineer		s	heet
Control Sample / Test Years Field Records Loss Description Learn Image: Proceeding and processing and pr							MC			1/1
a 30 C Orace of b group ward windly starth windly.	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
Remarks Scale (approx) Logged By Groundwater within sand band at 4.0m depth. 1:50 SF Monitoring standpipe installed upon completion. 1:50 SF Figure No. P20-164 WS3	0.20 0.50 0.80 1.00-1.45 1.20 1.80 2.00-2.45 2.20 2.80 3.00-3.45 3.20 3.30 4.00-4.45 4.20 4.90	C DV 42kPa DPT(C) N=17 SV 47kPa D SPT(C) N=16 SV 59kPa D SPT(C) N=17 D SV 69kPa D SPT(C) N=14 D D		3,4/3,4,5,5 3,3/4,4,4,4 3,3/4,4,4,5 Water strike(1) at 4.00m. 5,5/3,4,4,3			Grass onto grey brown slightly sandy slightly gravelly slity CLAY with frequent rootlets. (TOPSOIL) Very stiff brown mottled grey and orange brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse rounded to sub-rounded flint. (WEATHERED LOWESTOFT FORMATION) from 1.0m depth, becoming orange brown slightly mottled grey. Firm orange brown mottled grey slightly gravelly sandy slity CLAY. Gravel is fine to coarse angular to sub-rounded flint. (WEATHERED LOWESTOFT FORMATION) from 3.0m depth, becoming grey mottled orange brown. Brown and orange brown clayey SAND. (WEATHERED LOWESTOFT FORMATION) Soft brown slightly sandy slity CLAY. (WEATHERED LOWESTOFT FORMATION) Complete at 5.00m		₩	
1:50 SF Figure No. P20-164 WS3	Remarks Groundwater Monitoring st	within sand band at	t 4.0m de	pth.		<u> </u>		Scale (approx)	LB	ogged y
Figure No. P20-164 WS3			on oompi					1:50		SF
								Figure I	No. 164.	WS3

PAR	DOC	K					Site		N	lumb	ber
GEO E	NGINEERI	NG					Land off Fellows Lane, Colney Heath, Hertfordshire, AL4 0QQ		'	ws	4
Excavation I Percussion L Techniques	Method .iner Sampling	Dimens	ions	Ground	Leve	l (mOD)	Client Canton Ltd		J N F	ob I umb 20-1	er 64
		Locatio	n	Dates			Engineer		s	heet	
				17	//06/2	020	MC			1/1	1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	D (Thie	epth (m) ckness)	Description	Legend	Water	Ins	str
0.20 0.50 0.80 0.90 1.00-1.45 1.20 1.60 2.00-2.45 2.20 2.50 2.80 3.00-3.45 3.20 3.30 3.80 4.00-4.45	C DSV 70kPa C DSPT(C) N=22 SV 68kPa D SPT(C) N=26 D SV 64kPa DSPT(C) N=13 DSV 49kPa D SPT(C) N=7		2,3/2,3,5,12 12,11/11,5,5,5 Water strike(1) at 2.20m. 2,2/3,3,3,4 2,2/2,2,1,2			(0.20) (1.10) 1.30 (0.90) 2.20 (0.40) 2.60 (0.40) 3.00 (1.00) 4.00	Grass onto grey slightly sandy slightly gravelly silt CLAY with frequent rootlets. (TOPSOIL) Sliff grey mottled orange brown slightly sandy slightly gravelly silty CLAY. Gravel is fine to coars angular to sub-rounded coal, flint and sandstone. (WEATHERED LOWESTOFT FORMATION) Medium dense orange brown sandy GRAVEL. Gravel is fine to coarse sub-angular to sub-rounded flint. (WEATHERED LOWESTOFT FORMATION) Orange brown SAND. (WEATHERED LOWESTOFT FORMATION) Sliff grey mottled orange brown sandy CLAY. (LOWESTOFT FORMATION) Firm grey mottled orange brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular fint and chalk. (LOWESTOFT FORMATION) Complete at 4.00m				
Remarks Groundwater Monitoring st	r seepages within sa andpipe installed up	nd band 2 on compl	2.20-2.60m depth. etion.	<u> </u>	<u> </u>			Scale (approx) 1:50 Figure P20-	L B No. 164.	ogge SF WS4	∍d I

PAR		K				Site		N	umt	ber
GEO E	NGINEERI	NG				Land off Fellows Lane, Colney Heath, Hertfordshire, AL4 0QQ			ws	5
Excavation Percussion L	Method ₋iner Sampling	Dimens	ions	Ground	Level (mOD)	Client Canton Ltd		Jo N F	ob umb 20-1	5er 164
reonniques		Locatio	n	Dates		Engineer		s	heet	t
				17	7/06/2020	MC			1/1	1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	In	str
0.50 0.80 1.00-1.45 1.20 1.60 2.00-2.45 2.20 2.60 2.80 3.00-3.45 3.20 3.60 3.60 4.00-4.45 4.20 4.80	SV 26kPa D SPT(C) N=24 D D SPT(C) N=15 D SV 49kPa SPT(C) N=6 D SV 73kPa D SPT(C) N=21 D D		3,3/4,6,6,8 Water strike(1) at 1.50m. 7,6/7,3,3,2 1,1/0,1,1,4 2,3/3,4,7,7		(0.40) 0.40 (1.10) (0.80) (0.80) (0.70) (0.70) (2.00) (2.00)	Grass onto grey slightly sandy slightly gravelly sitty CLAY with frequent rootlets. (TOPSOIL) Stiff orange brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded flint, coal and occasional chalk and sandstone. (WEATHERED LOWESTOFT FORMATION) Medium dense orange brown slightly gravelly SAND. Gravel is fine to coarse sub-angular to sub-rounded flint. (WEATHERED LOWESTOFT FORMATION) Firm orange brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded flint and occasional chalk and sandstone. (WEATHERED LOWESTOFT FORMATION) Soft grey brown and orange brown slightly gravelly sandy CLAY. Gravel is fine to coarse sub-angular to sub-rounded flint. (LOWESTOFT FORMATION) from 3.50m depth, becoming firm. from 4.0m depth, becoming stiff.		Σ1		
Remarks Groundwate Monitoring st	r seepages within sa tandpipe installed up	and 1.50-2	2.30m depth. etion.				Scale (approx) 1:50 Figure I P20-	LB No. 1164.'	ogga SF WSE	ed

PADDOCK					Site		N	Number		
GEO E	NGINEERIN	NG				Hentfordshire, AL4 0QQ		\ \	NS	6
Excavation Percussion L Techniques	Method ₋iner Sampling	Dimensi	ons	Ground	Level (mOD)	Client Canton Ltd		J N P	ob umb 20-1)er 64
		Location	1	Dates 17	/06/2020	Engineer		s	heet	t
					1	MC			1/1	I
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	In	str
0.10	С				(0.30)	Scrub vegetation onto grey slightly sandy slightly gravelly silty CLAY with frequent rootlets. Gravel is flint. (TOPSOIL)				
0.60 0.80 0.90	SV 55kPa C D					Firm orange brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded flint, coal and occasional chalk and sandstone. (WEATHERED LOWESTOFT FORMATION)				
1.60 1.60	SV 59kPa D				(2.70)	from 2.0m depth, becoming stiff.				
2.60 2.60	SV 109kPa D				3.00	Very stiff grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse angular to sub-rounded				
3.60 3.60	SV 55kPa D				(2.00)	flint and chalk. (LOWESTOFT FORMATION)				
4.60 4.60	SV 88kPa D				5.00					
						Complete at 5.00m				
Remarks	ater encountered				-		Scale	Ļ	ogge	ed
Monitoring s	tandpipe installed up	on comple	etion.				(approx) 1:50	В	y SF	
							Figure N P20-1	lo. 164.	NS6	3

GEO ENGINEERING						Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	olney Heath,	Trial Pit Number TP1
Excavation Machine Exc	Method cavated Trial Pits	Dimensi 1.70m x	ons : 0.35m	Ground	Level (mOD) Client Canton Ltd		Job Number P20-164
		Location	1	Dates 17 19	7/06/2020- 9/06/2020	Engineer MC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	;) C	Description	Legend S
0.20	с				- (0.30 - 0.30 - 0.30	Crops onto dark brown gr clayey loamy SILT with fre of fine to coarse angular t Firm orange brown slightly CLAY, Gravel of fine to me flint. (WEATHERED LOW	ey slightly sandy slightly gra equent roots and rootlets. Gr o sub-rounded flint. (TOPSC y sandy slightly gravelly silty edium sub-angular to rounde ESTOFT FORMATION)	velly avel DIL)
0.80 0.80 1.00	C D SV 78kPa				 (2.10			
1.60 1.80	D SV 72kPa							
2.20						Complete at 2.40m		
		定日				Remarks No groundwater encountere Trial pit sides remained stat	ed. ole upon completion.	
						Scale (approx) 1:25	Logged By MC	Figure No. P20-164.TP1

Produced by the GEOtechnical DAtabase SYstem (GEODASY) $\textcircled{\sc c}$ all rights reserved

GEO ENGINEERING						Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	olney Heath,	Trial Pit Number TP2	
Excavation Machine Ex	Method cavated Trial Pits	Dimens 1.70m >	ions ‹ 0.35m	Ground	Level (mOD	Client Canton Ltd		Job Number P20-164	I
		Location	n	Dates 17 19	7/06/2020- 0/06/2020	Engineer MC		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)C	Description	Legend	Water
0.30	С				(0.35) 	Crops onto dark brown gr clayey loamy SILT with fre of fine to coarse angular t Firm to stiff orange brown slightly gravelly silty CLAN sub-angular to rounded fii LOWESTOFT FORMATIO	ey slightly sandy slightly gra equent roots and rootlets. Gr o sub-rounded flint. (TOPSC mottled grey slightly sandy ć Gravel of fine to medium nt. (WEATHERED DN)	vely avel DIL)	
0.90 1.00	D SV 91kPa				 - - -				
1.40	SV 102kPa				(1.85) (1.85)				
1.50	D				2.20	Complete at 2.20m			
						Remarks Trial pit sides remained stal No groundwater encountere	ole upon completion. ed.		
		PAR.		(Scale (approx) 1:25	Logged By MC	Figure No. P20-164.TP2	

		K			Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	olney Heath,	Trial Pit Number TP3	
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.70m	s ions x 0.35m	Ground	Level (mOD) Client Canton Ltd		Job Number P20-164
		Locatio	n	Dates	7/06/2020- 9/06/2020	Engineer MC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) 	Description	Legend
0.20	С				(0.30) - (0.30) - 0.30 	Crops onto dark brown gr clayey loamy SILT with fre of fine to coarse angular t Firm brown to orange bro CLAY with rootlets to 0.50 angular to rounded flint. (\ FORMATION)	ey slightly sandy slightly gra equent roots and rootlets. Gr o sub-rounded flint. (TOPSC wn slightly sandy gravelly si Im depth. Gravel of fine to c WEATHERED LOWESTOF	Ivelly avel DIL) Ity parse T
0.70 0.80	D SV 78kPa				- - - - - - 0.90	Firm orange brown mottle Gravel of fine to coarse su (WEATHERED LOWEST	d grey slightly gravelly silty ıb-angular to rounded flint. OFT FORMATION)	CLAY.
1.10	D				- - - - - - - - - - - - - - - - - - -			
1.80 1.90	SV 67kPa D		Water strike(1) at 2.20m		- - - - - - - - - - - - 2.20	Soft to firm orange brown	slightly gravelly very sandy	
2.40	В		fell to 2.40m in 5 mins.		(0.30) 2.50 	Gravel of fine to coarse su (WEATHERED LOWEST Complete at 2.50m	slightly gravely very sandy ub-angular to rounded flint. OFT FORMATION)	ULAY.
						Remarks Trial pit sides remained stal Groundwater encountered a completion of excavation.	ole upon completion. at 2.20m depth, filling trial pi	t to 2.40m upon
\$7,				10		Scale (approx) 1:25	Logged By MC	Figure No. P20-164.TP3

		K				Site Land off Fellows Lane, Colney Heath, Hertfordshire, AL4 0QQ			Trial P Numb TP4	it er 1
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.60m	ions x 0.35m	Ground	Level (mOD)	Client Canton Ltd			Job Numbe P20-16	er 64
		Locatio	n	Dates 17 19	7/06/2020- 9/06/2020	Engineer MC			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription		Legend	Water
					 (0.40)	Crops onto dark brown gro silty CLAY with frequent ro coarse angular to sub-rou	ey slightly sandy slightly gra ots and rootlets. Gravel of f nded flint. (TOPSOIL)	velly ine to		
0.30 0.30 0.50	C D C				0.40	Firm grey occasionally ora gravelly silty CLAY. Grave rounded flint. (WEATHER	inge brown slightly sandy sl I of fine to coarse sub-angu ED LOWESTOFT FORMAT	ightly lar to ION)		
0.80 0.80	SV 84kPa D				0.65	Firm orange brown mottle with occasional to rare gra throughout. (WEATHERE	d grey slightly sandy silty Cl ivel sized sandy pockets D LOWESTOFT FORMATIC	_AY DN)		
1.40	SV 101kPa				(1.55) (1.55) 					
1.80 2.00	D SV 91kPa					from 2.0m depth, becc	ming silty CLAY.			
					2.20 	Complete at 2.20m				
					- - - - -					
					- - - - - -					
						L Remarks No groundwater encountere Trial pit sides remained stat	rd. le upon completion.			
	- Shere	1	AN CO			Scale (approx) 1:25	Logged By MC	Figure P20	• No. -164.TP4	4

		K		Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	Iney Heath,	Trial Pit Number TP5		
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.60m	ions (0.35m	Ground	Level (mOD) Client Canton Ltd		Job Number P20-164
		Location	n	Dates	7/06/2020- 9/06/2020	Engineer MC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness))	escription	Legend S
0.40	D				 (0.50) 	Crops onto dark brown gre silty CLAY with frequent ro coarse angular to sub-rou	ey slightly sandy slightly gra ots and rootlets. Gravel of f nded flint. (TOPSOIL)	velly ine to
0.70 0.90	D SV 84kPa				0.50 	Firm orange brown slightly CLAY. Gravel of fine to me flint. (WEATHERED LOWN	v sandy slightly gravelly silty dium sub-angular to rounde ESTOFT FORMATION)	يط
1.60 1.60	SV 101kPa D							
2.20	D					Complete at 2.30m		
The state of the s						Trial pit sides remained stab No groundwater encountere	le upon completion. d.	
	AS S	As	1 A A		12	Scale (approx) 1:25	Logged By MC	Figure No. P20-164.TP5

Excavation Method Dimensions Ground Level (mOD) Client Machine Excavated Trial Pits 1.60m x 0.35m Canton Ltd Canton Ltd	Job
	Number P20-164
Location Dates Engineer MC	Sheet 1/1
Depth (m) Sample / Tests Water Depth (m) Field Records Level (mOD) Depth (mOD) Depth (mOD) Depth (Thickness)	Legend S
0.20 C C C C C C C C C C C C C C C C C C C	to
CLAY with occasional gravel sized sand pockets. Gravel of fine to medium sub-angular to rounded flint. (WEATHERED LOWESTOFT FORMATION)	of
0.80 SV 78kPa 0.80 C 0.80 D	
1.80 SV 84kPa 1.80 D	
2.00	
Remarks	
Trial pit sides remained stable upon completion. No groundwater encountered.	
A Caller A	
Scale (approx) Logged By Fig 1:25 MC	gure No. P20-164.TP6

		K			Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	Iney Heath,	Trial Pi Numbe TP7	it ər	
Excavation Machine Ex	Method cavated Trial Pits	Dimens 1.60m x	ions < 0.35m	Ground	Level (mOD)	Client Canton Ltd		Job Numbe P20-16	ər 64
		Locatio	n	Dates 17 19	7/06/2020- 9/06/2020	Engineer MC		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
0.20	C SV 39kPa				(0.35) 	Crops onto dark brown gre silty CLAY with frequent rc coarse angular to sub-rou Soft to firm orange brown slightly gravelly silty CLAY angular to rounded fiint. (V	ey slightly sandy slightly gra ots and rootlets. Gravel of finded flint. (TOPSOIL) to mottled grey slightly sand Gravel of fine to coarse sul VEATHERED LOWESTOFT	velly ine to	
0.60 0.70	C D				(0.55) - 0.90 - (0.40)	FORMATION) Firm brown to grey slightly Gravel of fine to coarse ar (WEATHERED LOWESTO	sandy very gravelly CLAY. gular to rounded flint. DFT FORMATION)		
1.20 1.40	D SV 20kPa				- 1.30 	Very soft to soft orange br very sandy silty CLAY with throughout. (WEATHEREI	own occasionally grey sand very clayey sand lenses D LOWESTOFT FORMATIC	y to DN)	
1.80 1.90	SV 20kPa D				- (1.10) 				
2.30	SV 26kPa				2.40	Complete at 2.40m			
						No groundwater encountere Trial pit sides remained stab	d. le upon completion. Logged By	Figure No.	
1						-	-	• • • • •	

		K		Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	lney Heath,		Trial P Numb TP8	it er 3		
Excavation Machine Exc	Method cavated Trial Pits	Dimensi 1.60m x	ons : 0.35m	Ground	Level (mOD) Client Canton Ltd			Job Numbe P20-16	er 64
		Locatior	1	Dates 17 19	Engineer 17/06/2020- 19/06/2020 MC				Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	ם	escription	L	_egend	Water
0.20	D				(0.30) (0.30) 0.30	Crops onto dark brown gr silty CLAY with frequent ro coarse angular to sub-rou Firm to stiff orange brown CLAY. Gravel of fine to me flint. (WEATHERED LOW	ey slightly sandy slightly gra iots and rootlets. Gravel of fi inded flint. (TOPSOIL) mottled grey slightly gravell; dium sub-angular to rounde ESTOFT FORMATION)	velly ine to y silty		-
0.80 0.80 0.80	SV 91kPa C D					from 1.0m depth, grav flint and occasional chal	elly silty CLAY with gravel of k.			
1.20 1.40	D SV 110kPa				[(2.00) 					
2.00 2.10	D SV 97kPa				- - - - - - - - - - - - - - - - - - -	Complete at 2.30m				-
Jac 1990										
						Remarks No groundwater encountere Trial pit sides remained stat	d. le upon completion.			
		(in	Stand 2			Scale (approx) 1:25	Logged By MC	Figure P20-	No. 164.TP8	8

		K		Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	lney Heath,	Trial P Numb TPS	'it er 9		
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.60m >	ions (0.35m	Ground	Level (mOD)	Client Canton Ltd		Job Numb P20-10	er 64
		Location	n	Dates 17 19	7/06/2020- 0/06/2020	Engineer MC		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
0.20	C SV 39kPa				(0.30) - (0.30) - 0.30	Crops onto dark brown gre silty CLAY with frequent ro coarse angular to sub-rou Soft to firm orange brown slightly gravelly silty CLAY angular to rounded fiint. (V FORMATION)	ey slightly sandy slightly gra iots and rootlets. Gravel of f nded flint. (TOPSOIL) mottled grey slightly sandy . Gravel of fine to coarse sul VEATHERED LOWESTOFT	velly ine to	-
0.60	D SV 75kPa				 (1.50)				
1.30	D				- - - - - - - - -				
1.80	SV 44kPa D					Complete at 1.80m			
						Trial pit sides remained stab No groundwater encountere	le upon completion. d.		
	e af st	A	AND A	R. I		Scale (approx) 1:25	Logged By MC	Figure No. P20-164.TP	9

		K		Site Trial Pit Number Land off Fellows Lane, Colney Heath, Hertfordshire, AL4 0QQ TP10				it ∍r 0		
Excavation Machine Exc	Method cavated Trial Pits	Dimensi 1.60m x	ions (0.35m	Ground	Level (mOD	Client Canton Ltd			Job Number P20-164	
		Location	1	Dates 17/06/2020- 19/06/2020		Engineer MC		:	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	D	escription	L	.egend	Water
0.30	D				(0.40) 0.40	Crops onto dark brown gre silty CLAY with frequent rc coarse angular to sub-rou	ey slightly sandy slightly gra ots and rootlets. Gravel of f nded flint. (TOPSOIL)	velly fine to		
					- - - - - - -	firm to sum orange brown gravelly silty CLAY. Gravel rounded flint. (WEATHERI	mottled grey slightly gravell of fine to medium sub-angu ED LOWESTOFT FORMAT	y to ular to ION)		
0.90 0.90 0.90	SV 88kPa C D				- - - - - - -					
					- (1.70) 					
1.90	D									
2.20	D				2.10 (0.20) 2.30	Medium dense orange bro gravelly SAND. Gravel of flint. (WEATHERED LOW) Complete at 2.30m	wn slightly clayey to clayey fine to coarse angular to rou ESTOFT FORMATION)	very unded		
						Remarks No groundwater encountere Trial pit sides remained stab	d. le upon completion.			
						Scale (approx)	Logged By	Figure 1	No.	
			AND AND	X	and a	1:25	MC	P20-10	64.TP1	0

		K		Site Trial Pit Land off Fellows Lane, Colney Heath, TP11						
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.60m >	ions < 0.35m	Ground	Level (mOD) Client Canton Ltd			Job Numbe P20-16	ər 54
		Location	n	Dates 17 19	7/06/2020- 1/06/2020	Engineer MC			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) D	escription		Legend	Water
0.40	D				 (0.50)	Crops onto dark brown gro silty CLAY with frequent ro coarse angular to sub-rou	ey slightly sandy slightly gra ots and rootlets. Gravel of f nded flint. (TOPSOIL)	velly îne to		
0.40					0.50	Stiff orange brown occasic silty CLAY. Gravel of fine t flint. (WEATHERED LOW	onal mottled grey slightly gra o coarse sub-angular to rou ESTOFT FORMATION)	avelly inded		
0.90 0.90	SV 109kPa D									
					(1.70)					
1.60 1.60	SV 104kPa D									
2.00	SV 117kPa				 					
2.10	D				2.20	Complete at 2.20m				
					- - - - - - -					
					- -					
						Remarks Trial pit sides remained stab No groundwater encountere	le upon completion. d.			
				A. Car	L O LS	Scale (approx) 1:25	Logged By MC	Figure P20-	No. 164.TP1	1

						Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	Iney Heath,	1	Trial Pit Number TP12
Excavation Machine Exc	Method cavated Trial Pits	Dimensi 1.60m x	ions (0.35m	Ground	Level (mOD)	Client Canton Ltd		ì	Job Number P20-164
		Location	n	Dates 17 19	7/06/2020- 9/06/2020	Engineer MC		ŝ	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	D	escription	Le	egend Safe
					 (0.50)	Crops onto dark brown gre silty CLAY with frequent ro coarse angular to sub-rou	ey slightly sandy slightly gra ots and rootlets. Gravel of f nded flint. (TOPSOIL)	ivelly fine to	
0.70 0.70	SV 65kPa D				- 0.50 	Firm to stiff orange brown CLAY. Gravel of fine to co. (WEATHERED LOWEST	slightly gravelly to gravelly : arse sub-angular to rounded DFT FORMATION)	silty d flint.	
1.60 1.60	SV 62kPa D				- - - - -				
2.00	SV 75kPa					from 2.0m depth, beco	ming sandy.		
2.20	D				2.30	Complete at 2.30m			
				の言語でも		Remarks No groundwater encountere Trial pit sides remained stab	d. le upon completion.	Figure N	No
a chi		16			- CC	Scale (approx) 1:25	Logged By MC	Figure N P20-16	No. 64.TP12

		K				Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	lney Heath,	Trial Pit Numbe TP13	t er 3
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.80m x	ions k 1.30m	Ground	Level (mOD)	Client Canton Ltd		Job Numbe P20-164	r 4
		Locatio	n	Dates 17 19	7/06/2020- 0/06/2020	Engineer MC		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	D	escription	Legend	Water
0.70 0.70 1.20	CD CD				(0.90) (0.40) (0.40) 1.30	Vegetation onto brown to o gravelly silty CLAY with ro clayware pipe, plastic and Firm orange brown occasi CLAY. Gravel of fine to co (WEATHERED LOWESTO at 0.90m depth, black of Complete at 1.30m Remarks Trial pit sides remained state Significant water inflow at 0. drainage pipe.	ark brown slightly sandy sli ots and rootlets. Gravel of flint. (MADE GROUND) onally grey slightly gravelly arse sub-angular to rounded DFT FORMATION) ribbed plastic drainage pipe	ghtly silty I flint. lack ribbed plastic	c
						Scale (approx)	Logged By	Figure No.	
				A CAN		1:25	MC	P20-164.TP13	3

PAD	DOC	K			Site Land off Fellows Lane, Co	Iney Heath,	Trial Pit Number		
GEO E		Dimens	ions	Ground	Level (mOD)	Hertfordshire, AL4 0QQ		Joh	
Machine Exc	avated Trial Pits	1.30m x	< 0.35m	Ground	Level (mob)	Canton Ltd		Number P20-164	
		Locatio	n	Dates 17 19	7/06/2020- 1/06/2020	Engineer MC		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Kater Kater	
0.30	С				(0.35) 0.35	Crops onto dark brown gre clayey loamy SILT with fre of fine to coarse angular to Stiff pale to orange brown 1 10m denth. Gravel of fin	ey slightly sandy slightly gra quent roots and rootlets. Gr o sub-rounded flint. (TOPSC gravelly CLAY with roots to a to coarse rounded to	velly avel DIL)	
0.80	D					sub-angular flint. (WEATH FORMATION) from 0.60m depth, bec grey brown.	ERED LOWESTOFT	5	
1.30	D				(1.55) (1.55) 				
1.80	D				- - - - - - - - - - - - - - - - - - -	Complete at 1.90m			
					- - - - - - - - - - -				
						Remarks No groundwater encountere Trial pit sides remained stab Infiltration testing undertake	d. le upon completion. n.		
	1.		X6			Scale (approx)	Logged By	Figure No.	
24			Salar Charles	IF THERE		1:25	MC	P20-164.SA1	
		K				Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	lney Heath,	Tr N	ial Pit umber SA2
---------------------------	-----------------------------	-----------------------	------------------------	--------------------------	--------------------------------------	---	---	-----------------------	-------------------------
Excavation Machine Eca	Method avated Trial Pits	Dimensi 1.30m >	ions < 0.35m	Ground	Level (mOD) Client Canton Ltd		Jo Ni P	ob umber 20-164
		Location	n	Dates 17 19	7/06/2020- 9/06/2020	Engineer MC		SI	h eet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness))	escription	Leç	Kater Vater
					(0.20) (0.20) (0.20)	Crops onto dark brown gra clayey loamy SILT with fre of fine to coarse angular to	ey slightly sandy slightly gra quent roots and rootlets. Gr o sub-rounded flint. (TOPSC	velly avel DIL)	
0.40	D				(0.60)	Stiff grey to orange brown rootlets to 0.50m depth. G to sub-angular flint. (WEA ⁻ FORMATION)	slightly gravelly silty CLAY ravel of fine to medium rour THERED LOWESTOFT	with nded	
0.60	SV 89kPa								
1.00 1.00	SV 96kPa D				0.80 	Stiff orange brown mottled Gravel of fine to medium r (WEATHERED LOWESTO	l grey slightly gravelly silty (ounded to sub-angular flint. DFT FORMATION)	CLAY.	
					 	Complete at 1.50m			
					- - - - - -				
					- - - - -				
					- - - - - - - -				
					- - - - - -				
				- Marca - Lots	 #4				
		10.7				Remarks Infiltration testing undertake Trial pit sides remained stab No groundwater encountere	n. le upon completion. d.		
		RT		Ac	See VIII	Scale (approx) 1:25	Logged By MC	Figure No P20-164). 4.SA2

		K				Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	lney Heath,		Trial P Numbe SA3	it er 3
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.30m x	ions k 0.35m	Ground	Level (mOD) Client Canton Ltd			Job Numbe P20-16	er 64
		Locatio	n	Dates 17 19	7/06/2020- 9/06/2020	Engineer MC			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) D	escription		Legend	Water
					 (0.40)	Crops onto dark brown gr clayey loamy SILT with fre of fine to coarse angular to	ey slightly sandy slightly gra quent roots and rootlets. Gr o sub-rounded flint. (TOPSC	velly avel DIL)		
0.30	С				0.40	Firm to stiff orange brown gravelly silty CLAY with r of fine to medium si (WEATHERED LOWEST	mottled grey slightly gravell ootlets to 0.60m depth. Gr ub-angular to rounded	ly to avel flint.		
0.70 0.70	SV 93kPa D				- - - - - (1.10)	, , ,				
1.20	SV 102kPa									
1.40	D				- - - - - -	Complete at 1.50m				
					- - -					
					- 					
					- - - - -					
						Remarks No groundwater encountere Trial pit sides remained stat Infiltration testing undertake	ed. le upon completion. n.			
			Mr. Jak			Scale (approx) 1:25	Logged By MC	Figure P20-	No. 164.SA	3

Produced by the GEOtechnical DAtabase SYstem (GEODASY) $\ensuremath{\mathbb{C}}$ all rights reserved

		K				Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	Iney Heath,	Trial Pit Number SA4
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.30m x	ions < 0.35m	Ground	Level (mOD)	Client Canton Ltd		Job Number P20-164
		Locatio	n	Dates 17 19	7/06/2020- 9/06/2020	Engineer MC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
					 (0.70)	Crops onto dark brown gr clayey loamy SILT with fre depth. Gravel of fine to co (TOPSOIL)	ey slightly sandy slightly gra quent roots and rootlets to (arse angular to sub-rounded	velly).50m J flint.
0.50	D				0.70	Stiff grey to orange brown	slightly gravelly silty CLAY.	
1.00	D					(WEATHERED LOWEST	DFT FORMATION)	
1.30	SV 78kPa				(1.30)	from 1.20m depth, bec occasionally grey.	oming orange brown	
1.80 1.80	SV 78kPa D				2.00	Querra lata esta 200a		
						Complete at 2.00m		
						No groundwater encountere Trial pit sides remained stab Infiltration testing undertake	d. le upon completion. n.	
		N.	The sector		S	Scale (approx) 1:25	Logged By MC	Figure No. P20-164.SA4

PA	DDOC	KB				Site	1		Trial Pit Number	
GEO E	NGINEERIN	NG				Hertfordshire, AL4 0QQ	nney Heath,		SA5	
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.30m x	ions ≪0.35m	Ground	Level (mOD) Client Canton Ltd			Job Number P20-164	ŀ
		Locatio	n	Dates 17 19	7/06/2020- 9/06/2020	Engineer MC			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	ם	escription	I	Legend	Water
0.40	с				 (0.45) 0.45	Crops onto dark brown gro clayey loamy SILT with fre of fine to coarse angular to	ey slightly sandy slightly gra quent roots and rootlets. Gr o sub-rounded flint. (TOPSC	velly avel DIL)		
0.90	D					occasional fine to medium Gravel of fine to coarse su (WEATHERED LOWESTO	gravel sized póckets of sau ib-angular to rounded flint. DFT FORMATION)	nd.		
1.00	SV 52kPa				(1.05) 					
					 1.50 	Complete at 1.50m				
					- - - - -					
					- - - - - -					
A.A.	Sim			7.5		Remarks				
The second se						No groundwater encountere Trial pit sides remained stat Infiltration testing undertake	ed. le upon completion. n.			
and the	A STA	AD IN	1 ANT			Scale (approx) 1:25	Logged By MC	Figure P20-	No. 164.SA5	

		K				Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	Iney Heath,	Trial Pit Number SA6
Excavation Machine Exc	Method cavated Trial Pits	Dimens 1.30m	ions x 0.35m	Ground	Level (mOD)	Client Canton Ltd		Job Number P20-164
		Locatio	n	Dates 17 19	7/06/2020- 0/06/2020	Engineer MC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
					 (0.40)	Crops onto dark brown gre clayey loamy SILT with fre of fine to coarse angular to	ey slightly sandy slightly gra quent roots and rootlets. Gr b sub-rounded flint. (TOPSC	velly avel IIL)
0.30	D				0.40	Firm grey slightly sandy sl of fine to coarse si (WEATHERED LOWESTO	ightly gravelly silty CLAY. G ıb-angular to rounded DFT FORMATION)	ravel flint.
0.70	D				(0.50)			
					0.90	Firm to stiff orange brown occasional gravel sized po coarse sub-angular to rou LOWESTOFT FORMATIC	slightly gravelly silty CLAY v ckets of sand. Gravel of fine ided flint. (WEATHERED N)	vith e to
1.50	D				(1.10) (1.10)			
					2.00	Complete at 2.00m		
					- 			
						Remarks		
						No groundwater encountere Trial pit sides remained stab Infiltration testing undertake	d. le upon completion. n.	
		and the second				Scale (approx)	Logged By	Figure No.
A STOR		() ()			3	1:25	МС	P20-164.SA6

	K				Site Land off Fellows Lane, Co Hertfordshire, AL4 0QQ	Iney Heath,		Trial Pit Number SA7	
Excavation Method Machine Excavated Trial Pits	Dimensi 1.30m x	i ons (0.35m	Ground	Level (mOD) Client Canton Ltd			Job Number P20-164	
	Locatior	1	Dates 17 19	7/06/2020- 0/06/2020	Engineer MC			Sheet 1/1	
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness))	escription	L	-egend S	110101
				 (0.50) 	Crops onto dark brown gre clayey loamy SILT with fre of fine to coarse angular to	ey slightly sandy slightly gra quent roots and rootlets. Gr o sub-rounded flint. (TOPSC	ivelly ravel DIL)		
				0.50 	Firm to stiff orange brown slightly gravelly silty CLAY angular to rounded fiint. (V FORMATION)	mottled grey slightly sandy , Gravel of fine to coarse su VEATHERED LOWESTOF	ıb- T		
1.00 SV 106kPa				(1.00) 					
1.40 SV 117kPa					Complete at 1.50m				
					Remarks No groundwater encountere Trial pit sides remained stab Infiltration testing undertake	d. le upon completion. n.			_
					Scale (approx) 1:25	Logged By MC	Figure P20-1	No. 164.SA7	

Infiltration Test to BRE365 - SA1 TEST 1

Field Data

Fi	eld Data			Location:	SA1	TEST 1
Time	Time Elapsed (min)	Time Elapsed (sec)	Depth of Water below GL (m)	Engineer: Date:	MC 17/06/2020 Weathered Lowestof	t Formation
10:38 10:48 11:20 11:28 13:46	3.0 13.0 45.0 53.0 191.0	180 780 2700 3180 11460	0.90 0.90 0.90 0.90 0.90	1.3m	SA1 - 1.9 m depth Assume invert level of incoming drain is 0.9m bgl. Effective depth = 1m	Pit Depths (m bgl) Length 1.3 Width 0.35 Depth 1.9 25% Effective Depth 1.15 75% Effective Depth 1.65 Inlet Depth 0.9
	Linear extrapolate	d values for c	alculation		0.35m	1
Depth of Water (bgl)	0 20 0.00 0.20 Invert I incomin 0.40 0.60 1.00 1.20 1.40 1.60 1.80	00 400 evel of g pipe -	00 6000 — Depth of (m) — 25% Effec — 50% Effec — 75% Effec	8000 10000 water below ground level ctive depth (1.15m) ctive depth (1.40m) ctive depth (1.65m)	CALCULATION: Soil Infiltration Rate(Vp75-25 / (ap50 x tp) Where: Vp75-25 = effective s volume between 75% effective depth 1.3x0.35x(1.65-1.15) = 0.2275 ap50 = internal area 50% effective depth 2(1.3 x) + 2(0.35 x) = 2.105 Tp75-25 = the time for to fall from 75% - 25 depth = >>>	f) = 75-25) storage 6 and 25% of TP upto + base of TP + (1.3 x 0.35) or water level % effective secs
			Time (seconds)	Comment Insufficient infiltration	n over three hours -
P GE				Client: Canton Ltd Project No: P20-164 Project: Land off Fellov Colney Heath, AL4 0QQ	Soakaway Failed vs Lane, Hertfordshire,	

Infiltration Test to BRE365 - SA2 TEST 1

Field Data

Fi	eld Data			Location: Weather:	SA2 Overcast	TEST 1
Time	Time Elapsed (min)	Time Elapsed (sec)	Depth of Water below GL (m)	Engineer: Date: Strata Tested	MC 17/06/2020 Weathered Lowestof	it Formation
11:26 12:10 14:20	6.0 50.0 180.0	360 3000 10800	0.50 0.52 0.56	1.3m	SA2 - 1.5 m depth Assume invert level of incoming drain is 0.5m bgl. Effective depth = 1m	Pit Depths (m bgl) Length 1.3 Width 0.35 Depth 1.5 25% Effective Depth 0.75 75% Effective Depth 1.25 Inlet Depth 0.5
	Linear extrapolate	ed values for o	calculation		0.35m	-
					CALCULATION: Soil Infiltration Rate(f) = 75-25)
	0 2 0.00 0.20 0.40	000 40 Level of ng pipe -	000 6000 	8000 10000 water below ground level ctive depth (0.75m) ctive depth (1.00m)	Where: Vp75-25 = effective s volume between 75% effective depth 1.3x0.35x(1.25-0.75) = 0.2275	storage 6 and 25%
Water (bgl)	0.60 -	•			ap50 = internal area 50% effective depth 2(1.3 x) + 2(0.35 x) = 2.105	of TP upto + base of TP + (1.3 x 0.35)
Depth of	1.00 -				Tp75-25 = the time for to fall from 75% - 25° depth = >>>>	or water level % effective secs
	1.40 -				f= N/A	m/s
			Time (seconds)	Comment Insufficient infiltratior Soakaway Failed	n over three hours -
P				Client: Canton Ltd Project No: P20-164 Project: Land off Fellov Colney Heath, AL4 0QQ	vs Lane, Hertfordshire,	

Infiltration Test to BRE365 - SA3 TEST 1

Location: SA3

Field Data

Time 12:00 12:06 12:10 12:31 13:00 14:20 15:00	Time Elapsed (min) 0.0 6.0 10.0 31.0 60.0 140.0 180.0	Time Elapsed (sec) 0 360 600 1860 3600 8400 10800	Depth of Water below GL (m) 0.50 0.50 0.50 0.50 0.50 0.50 0.50	Engineer: Date: Strata Tested 	MC 17/06/2020 Weathered Lowestof SA3 - 1.5 m depth Assume invert level of incoming drain is 0.5m bgl. Effective depth = 1m	ft Formation Pit Depths (m bgl) Length 1.3 Width 0.35 Depth 1.5 25% Effective Depth 0.75 75% Effective Depth 1.25 Inlet Depth
	Linear extrapolate	ed values for c	calculation		0.35m	0.5
Depth of Water (bgl)	0 20 0.00 Invert L 0.20 Invert L 0.40 - 0.60 - 0.80 - 1.00 - 1.20 - 1.40 -	200 40 evel of g pipe -	100 6000 Depth of (m) 50% Effec 75% Effec 75% Effec Time (seconds	8000 10000 water below ground level ctive depth (0.75m) ctive depth (1.00m) ctive depth (1.25m)	CALCULATION: Soil Infiltration Rate(i Vp75-25 / (ap50 x tp) Where: Vp75-25 = effective s volume between 75% effective depth 1.3x0.35x(1.25-0.75) = 0.2275 ap50 = internal area 50% effective depth 2(1.3 x) + 2(0.35 x) = 2.105 Tp75-25 = the time for to fall from 75% - 25% depth = >>>> f= N/A Comment	f) = 75-25) storage % and 25% of TP upto + base of TP + (1.3 x 0.35) or water level % effective secs m/s
			Time (seconds)	Insufficient infiltration Failed	n three hours - Soakaway
P A GEC				Client: Canton Ltd Project No: P20-164 Project: Land off Fellov Colney Heath, AL4 0QQ	vs Lane, Hertfordshire,	

Infiltration Test to BRE365 - SA4 TEST 1

Eiald Data

Time Elapse (min) 0.0 1.0 5.0 10.0 25.0 48.0 82.0 125.0	rd Time Elapsed (sec) 0 60 300 600 1500 2880 4920 7500	Depth of Water below GL (m) 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.02	Eng Strata 1	Ested	MC 17/0 Wea S, Ass of in
0.0 1.0 5.0 10.0 25.0 48.0 82.0 125.0	0 60 300 600 1500 2880 4920 7500	1.00 1.00 1.00 1.00 1.00 1.01 1.02		1.3m	S/ Ass of ii
5.0 10.0 25.0 48.0 82.0 125.0	300 600 1500 2880 4920 7500	1.00 1.00 1.00 1.00 1.01 1.02		1.3m	S/ Ass of in
10.0 25.0 48.0 82.0 125.0	600 1500 2880 4920 7500	1.00 1.00 1.01 1.02		1.3m	S/ Ass of ii
25.0 48.0 82.0 125.0	1500 2880 4920 7500	1.00 1.00 1.01 1.02		1.3m	S. Ass of it
48.0 82.0 125.0	2880 4920 7500	1.00 1.01 1.02		1.3m	S Ass of i
82.0 125.0	4920 7500	1.01 1.02		1.3m	S. Ass of in
125.0	7500	1.02		1.3m	S Ass of i
				1.3m	Ass of i
				1.3	of i
					I 4
					1r
1 :	lated values for				
					I
					CA
					Sail
					Vn7
0	2000	1000	C000		vpi
0 00 +	2000	4000	6000		Whe
0.00	art Louis of	Depth of wat	ter below ground level		Vp7
0.20 - inco	ming pipe -	25% Effective	e depth (1.25m)		volu
0.40		50% Effective	e denth (1 50m)		effe
0.40		75% Effective	e depth (1.75m)		1.3>
0.60					an5
0.80 -					50%
1.00	•	• •	•		2(1.
1.20 -					Tp7
1.40					to fa
1.60					
1.80 -					
2.00					f
		Time (seconds)			Cor
	0 0.00 0.20 - Inve inco 0.40 - 0.60 - 1.00 - 1.20 - 1.40 - 1.60 - 1.80 - 2.00 -	0 2000 0.00 0.20 Invert Level of incoming pipe - 0.40 0.60 1.00 1.20 1.40 1.60 1.80 2.00	0 2000 4000 0.20 Invert Level of (m) 1.20 - 50% Effective 0.40 - 55% Effective 0.40	0 2000 4000 6000 0.20 Invert Level of incoming pipe - 25% Effective depth (1.25m) 0.40 - 50% Effective depth (1.50m) 0.60 - 75% Effective depth (1.75m) 0.80 - 75% Effective depth (1.75m) 0.80 - 1.20 -	0 2000 4000 6000 0.00 Depth of water below ground level (m) 25% Effective depth (1.25m) 0.40 50% Effective depth (1.50m) 0.60 75% Effective depth (1.75m) 0.80 100 100 100 100 100 100 100 100 100 1

Weather: Overcast Engineer: MC Date: 17/06/2020

Infiltration Test to BRE365 - SA5 TEST 1

Field Data

11111	e Tim	e Elapsed (min)	Time Elapsed (sec)	Depth of Water below GL (m)	Eng Strata 1	jineer: Date:	M 17
13:0 13:1 13:2 14:2 15:1	5 5 5 0	0.0 5.0 20.0 80.0 125.0	0 300 1200 4800 7500	0.50 0.52 0.54 0.55 0.55		1.3m	
	Linea	ır extrapolate	ed values for o	calculation	6000		c s v
	0.00 -	Invert L	evel of	Depth of (m) 25% Effect	water below ground level		W
	0.20 -			500/ 555			V vo ef
	0.20 -			50% Effec 75% Effec	tive depth (1.00m)		V _I vc ef 1.
(lɓq) .	0.20 -			50% Effec 75% Effec	tive depth (1.00m)		Vi ef 1. ap 50
f Water (bgl)	0.20 - 0.40 - 0.60 - 0.80 -			50% Effec	tive depth (1.00m)		V vc ef 1. 5(2(
epth of Water (bgl)	0.20 - 0.40 - 0.60 - 0.80 - 1.00 -			50% Effec	tive depth (1.00m)		V _I vc ef 1. a to
Depth of Water (bgl)	0.20 - 0.40 - 0.60 - 0.80 - 1.00 - 1.20 -			50% Effec	tive depth (1.25m)		V _I vc ef 1. 2(2(T _I to de
Depth of Water (bgl)	0.20 - 0.40 - 0.60 - 0.80 - 1.00 - 1.20 - 1.40 -			50% Effec	tive depth (1.00m)		V vi el 1. 2(Tj to de

Location: SA5 Weather: Overcast Engineer: MC Date: 17/06/2020

Colney Heath, Hertfordshire, AL4 0QQ

Infiltration Test to BRE365 - SA6 TEST 1

Field Data

•					Weath
Time	Time (Elapsed min)	Elapsed (sec)	Depth of Water below GL (m)	
13:22 13:29 13:30 13:49 13:59 14:26 15:22 16:24	2 5 5 5 5 6 2 1 1 1	0.0 3.0 8.0 23.0 33.0 64.0 .20.0 .82.0	0 180 480 1380 1980 3840 7200 10920	1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	- Strata Tes
(j6	Linear 0 0.00 + 0.20 - 0.40 - 0.60 - 0.80 -	extrapolate	>d values for d	calculation 00 6000 Depth of (m) 25% Effec 	8000 10000 water below ground level trive depth (1.48m) trive depth (1.65m)
oth of Water (b	1.00 - 1.20 - 1.40 -	•••-	••		• • •
Dep	1.60 - 1.80 - 2.00				
Dep	1.60 1.80 2.00			Time (seconds))

Location: SA6 Weather: Overcast Engineer: MC Date: 17/06/2020

Strata Tested Weathered Lowestoft Formation

TEST 1

Pit Depths (m bgl) Length 1.3 Width 0.35 Depth SA6 - 2 m depth Assume invert level 2.0 of incoming drain is 25% Effective Depth 1.3m bgl. Effective 1.48 depth = 0.7m75% Effective Depth 1.83 Inlet Depth 1.3 0.35m CALCULATION: Soil Infiltration Rate(f) = Vp75-25 / (ap50 x tp75-25) Where: Vp75-25 = effective storage volume between 75% and 25% effective depth 1.3x0.35x(1.825-1.475) = 0.15925 ap50 = internal area of TP upto 50% effective depth + base of TP 2(1.3 x) + 2(0.35 x) + (1.3 x 0.35)1.61 = Tp75-25 = the time for water level to fall from 75% - 25% effective depth secs = >>>> f= N/A m/s

> **Comment** Insufficient infiltration over three hours -Soakaway Failed

Client: Canton Ltd oject No: P20-164 Project: Land off Fellows Lane, Colney Heath, Hertfordshire, AL4 0QQ

Infiltration Test to BRE365 - SA7 TEST 1

Field Data

Time 14:15 14:16 14:18 14:25 14:35 14:57 16:18	Time 5 5 5 5 5 5 3 7 3	e Elapsed (min) 0.0 1.0 3.0 10.0 20.0 43.0 72.0 123.0	Time Elapsed (sec) 0 60 180 600 1200 2580 4320 7380	Depth of Water below GL (m) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	SI
	Linea	r extrapolate	ed values for d	calculation	6000
	0.00			Depth of	water below ground level
	0.20 -	Invert L incomin	evel of g pipe -	(m) —— 25% Effec	ctive depth (0.75m)
				——— 50% Effec	ctive depth (1.00m)
	0.40 -			——— 75% Effec	ctive depth (1.25m)
r (bgl)	0.60 -	• • •	•	•	
Nate	0.80 -				
pth of \	1.00 -				
De	1.20 -				
	1.40 -				
	ļ			Time (seconds)

GEO ENGINEERING

Location: SA7 Weather: Overcast Engineer: MC Date: 17/06/2020

Appendix H

Thames Water - Wastewater Plan and Manhole Records

Asset location search

Woods Hardwick Ltd BEDFORD MK40 3NH

Search address supplied

Roundhouse Farm Bullen's Green Lane North Mymms Welwyn Hatfield Hertfordshire AL4 0QT

Your reference 18770_Colney Heath

Our reference

ALS/ALS Standard/2020_4193250

Search date

12 June 2020

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Search address supplied: Roundhouse Farm, Bullen's Green Lane, North Mymms, Welwyn Hatfield, Hertfordshire, AL4 0QT

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:

TL2006SE TL2105NW TL2106SW TL2005NE

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Following examination of our statutory maps, Thames Water has been unable to find

any plans of water mains within this area. If you require a connection to the public water supply system, please write to:

New Connections / Diversions Thames Water Network Services Business Centre Brentford Middlesex TW8 0EE

Tel: 0845 850 2777 Fax: 0207 713 3858 Email: developer.services@thameswater.co.uk

The following quartiles have not been printed as they are out of Thames' water catchment area. For details of the assets requested please contact the water company indicated below:

TL2006SE	Affinity Water
TL2105NW	Affinity Water
TL2106SW	Affinity Water
TL2005NE	Affinity Water

Affinity Water Ltd Tamblin Way Hatfield AL10 9EZ

Tel: 0345 3572401

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level	
9000	74.2	72.1	
5100	75.01	69.58	
6201	74.89	69.67	
6200	73.74	69.83	
7350	72.31	69.18	
7301	72.28	69.92	
8350	72.84	70.16	
7300	72.33	70.51	
8300	74.18	70.94	
9350	74.61	71.14	
9300	74.6	71.35	
941A	n/a	n/a	
7400	71.96	69.99	
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or emission. The actual position			

shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual posi of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is availab

Manhole Reference	Manhole Cover Level	Manhole Invert Level			
251A	n/a	n/a			
1500	76.88	75.03			
251B	n/a	n/a			
1550	n/a	75.97			
1501	76.54	74.59			
1603	75.93	75.06			
1602	75.74	75.14			
1601	75.78	75.24			
1600	75.77	75.27			
1650	75.9	74.9			
1701	75.88	75.33			
1700	75.88	75.38			
171A	n/a	n/a			
0751	75.82	74.47			
0700	76.01	74.56			
0701	75.89	74.44			
0702	75.78	74.34			
0704	75.99	74.98			
071A	n/a	n/a			
0703	76.06	74.82			
071B	n/a	n/a			
061A	n/a	n/a			
0750	76	74.98			
0600	75.72	75.07			
0601	75.73	74.99			
0602	75.76	74.91			
0500	76.37	74.31			
1608	76.34	74.6			
1502	76.31	74.41			
1610	75.75	74.85			
1651	75.72	74.82			
1607	75.79	74.78			
1609	76.42	74.52			
1606	75.77	74.84			
1652	n/a	74.54			
1605	75.79	74.89			
1604	75.89	74.94			
The position of the apparatus shown on this plan	s given without obligation and warranty, and the acc	curacy cannot be guaranteed. Service pipes are not			
shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position					
or mains and services must be vermed and establish	eu on site before any works are undertaken.	of mains and services must be verified and established on site before any works are undertaken.			

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4200	79.57	76.7
2105	75.71 75.83	74.56 n/a
2106	75.75	74.59
2155	76.02	75.26
3009 3001	77 76 71	74.57
3106	76.97	76.51
3002	76.7	74.8
3105	76.87	76.33
311B 3104	n/a 76.76	n/a 75.93
3101	76.73	75.73
3102	76.88	75.88
3100	76.72	75.4 75.9
3010	77.06	74.69
3151	77.12	76.07
3150 3050	76.91 77 1	76.11 76.32
3107	77.38	76.23
3108	77.35	76.4
3109	77.5	76.51 76.57
3111	77.69	76.73
3251	77.07	76.21
321A 3252	n/a 77.09	n/a 76.22
3207	77.42	75.82
2204	75.55	74.57
2205 2203	75.56 75.43	74.73
3206	77.26	76.65
2201	75.33	73.76
2206	75.78	75.01
2207	76.63	75.87
3204	77.17	76.38
3203	77.02	76.17
2251 2208	75.28 76.55	n/a 75
3250	77.32	76.54
3202	77.04	76.04
4250	79.32	75.90
3200	76.95	75.68
3302	76.74	75.51
3350	76.64 76.83	75.29 74 63
3300	76.33	73.95
2351	76.5	73.85
1301	75.34 75.57	72.52
2300	n/a	n/a
3351	77.28	75.38
3451 3450	//.08 n/a	/5.82 n/a
3015	77.35	76.33
3014	77.37	76.15
2004	75.09	70.1 74.27
2003	75	74.18
2005	75.16	74.39
1007	75.57	74.83
3008	76.89	76.29
1012	74.83	73.94
1006	74.68	73.9
3006	76.95	76.07
3012	77.14	75.24
3004	76.96	75.92
1010	74.58	73.48
1005	74.55	73.85
2006	74.93	73.78
1004	74.49	73.76
1003	74.39	73.74
1102	74.06	72.68
111H	n/a	n/a
1150	74.3	73.5
111F	n/a	n/a
111E	n/a	n/a
111D	n/a	n/a 72.75
1106	74.37 74.83	73.5
111B	n/a	n/a

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk | www.thameswater-propertysearches.co.uk

Page 11 of 17

Manhole Reference	Manhole Cover Level	Manhole Invert Level	
111A	n/a	n/a	
1009	75.01	73.96	
111G	n/a	n/a	
2100	74.88	73.92	
2150	74.78	73.98	
2108	74.93	74.15	
2151	75	74.21	
2109	75.21	74.16	
2000	75.15	74.25	
2200	75.3	74.33	
2102	75.02	74.15	
2001	75.18	74.4	
2103	75.08	74.15	
2153	75.24	74.24	
2104	75.51	74.41	
2154	75.5	74.82	
2152	75.69	74.86	
001D	n/a	n/a	
001A	n/a	n/a	
001B	n/a	n/a	
001C	n/a	n/a	
0000	74.08	72.36	
1100	73.96	72.56	
1152	n/a	n/a	
1151	74.08	73.28	
1101	n/a	n/a	
1300	75.3	72.4	
0300	74.32	71.87	
0350	73.65	71.45	
3011	76.94	74.97	
301A	n/a	n/a	
311C	n/a	n/a	
311A	n/a	n/a	
The position of the apparatus shown on this plan	is given without obligation and warranty, and the acc	curacy cannot be guaranteed. Service pipes are not	
shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.			

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
8950	74.46	73.94
8900	74.18	71.81
9853	75.48 75.62	74.54
9850	75.35	74.31
8851	75.46	73.87
881A	n/a	n/a
9804	75.33	73.16
881B	n/a 75 4	n/a 72.05
8803	75.4 n/a	n/a
9803	75.19	73.36
9805	75.26	73.86
8850	75.29	74.2
991G 901H	n/a n/a	n/a n/a
8902	75.13	72.02
991F	n/a	n/a
9950	74.85	74.24
891C	n/a	n/a
891B	n/a n/a	n/a n/a
9951	74.72	74.06
8901	74.85	71.65
991D	n/a	n/a
991C	n/a	n/a
991A	n/a	n/a
891A	n/a	n/a
5801	73.08	70.25
581A	n/a	n/a
5800	73.35	70.56
681A	13.02 n/a	12.20 n/a
6752	73.82	72.22
6700	74.03	71.37
6751	74.09	72.14
6701 6752	74.66	70.94
6750	10/a 74 75	11/a 73.27
7751	74.99	73.74
7701	74.92	72.07
7702	75.25	73.5
7801	75.1	73.9
7850	75.24	74.10
7800	75	71.29
7752	74.98	74.45
7851	75.42	74.4
7802	75.47 75.11	/3.41 72 59
8754	75.31	73.79
8702	75.41	73.71
8852	n/a	n/a
8800	75.42	72.78
9702	76.1 76.05	73.04 74 91
9703	76.07	74.93
9706	76.06	74.81
9707	76.06	74.59
9704	/6.04 75.01	74.64 74.24
8700	75.56	74.36
8752	75.38	73.18
8701	75.56	74.04
9751	76	74.02
8750	75.54 75.69	/ 3.48 73 74
9700	75.61	74.42
9709	75.85	73.77
9750	75.9	74.18
9854	75.78	74.38
9801	75.73	73.64
9852	75.57	74.26
9802	75.69	73.6
C123	70.64	67.13
CC124	71.73	07.17 67.29
C124	71.61	67.27
7753	75.08	74.06
7750	75.56	74.3
7700	75.42	72.42
8601	73.35 74.49	(3.85 72 63
8753	75.46	72.98
871B	n/a	n/a
871A	n/a	n/a
8600	75.64	72.97
9/04	/ 3.34	/ 3.4

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk | www.thameswater-propertysearches.co.uk

Page 14 of 17

Manhole Reference	Manhole Cover Level	Manhole Invert Level	
9602	75.84	74.67	
9601	75.99	75.06	
9701	76.07	75.27	
9753	75.8	73.83	
9752	76.05	73.86	
9600	76.25	73.65	
961A	n/a	n/a	
581C	n/a	n/a	
581B	n/a	n/a	
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.			

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve Dam Chase Fitting
- ≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

いし Outfall

Undefined End Inlet

Other Symbols

Symbols used on maps which do not fall under other general categories

- ****/ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

hames

Water

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.
- 6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Appendix I

Environment Agency - Reservoir Flood Map

Extent of flooding from reservoirs

Maximum extent of flooding

Appendix J Thames Water Correspondence

Miss Jasmine Katsoulis Woods Hardwick 15-17 Goldington Road Bedford MK40 3NH Wastewater pre-planning Our ref DS6075257

20 Aug. 20

Pre-planning enquiry: Confirmation of sufficient capacity

Dear Miss Katsoulis

Thank you for providing information on your development: **Roundhouse Farm, Colney Heath, Bullen's Green Lane, North Mymms, Welwyn Hatfield, Hertfordshire, AL4 0QT.**

Residential development comprising 100 units. Foul water to be pumped into MH3011 at 2.31I/s. Surface water to be attenuated to the greenfield rate 9.3I/s and discharged into MH1150.

We're pleased to confirm that there will be sufficient foul and surface water capacity in our sewerage network to serve your development, so long as your phasing follows the timescale you've suggested.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

Source Protection Zone

The development site boundary falls within a Source Protection Zone for groundwater abstraction. These zones may be at particular risk from polluting activities on or below the land surface. To prevent pollution, the Environment Agency and Thames Water (or other local water undertaker) will use a tiered, risk-based approach to regulate activities that may impact groundwater resources, this may potentially affect your drainage or surface water strategies where infiltration systems are proposed. The applicant is encouraged to read the Environment Agency's approach to groundwater protection (available at https://www.gov.uk/government/publications/

groundwater-protection-position-statements) and may wish to discuss the full implications for their development with a suitably qualified environmental consultant.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on 0203 577 8082.

Yours sincerely

Artur Jaroma

Thames Water
Yolanda Kwaramba

From:	Yolanda Kwaramba
Sent:	20 August 2020 10:42
То:	'DEVELOPER.SERVICES@THAMESWATER.CO.U'
Cc:	John Freeman
Subject:	FW: RE: RE: RE: RE: FW: Thames Water Pre-Planning Enquiry Request. TW ref.
	DS6075257 [Filed 20 Aug 2020 14:20]
Attachments:	DS6075257 PDEV AL4 0QT Roundhouse Farm.pdf; 18.08.2020 Greenfield
	Calculation.PNG

Artur,

Further to our telephone conversation, please could you revise your response taking into account the following;

- 1. Preferred surface water point of connection MH3010 in Bullens Green Lane.
- 2. The QBAR rate is 9.6l/s based on a site area of 5.25ha see attached calculation.

I look forward to hearing from you soon.

Many thanks.

From: <u>DEVELOPER.SERVICES@THAMESWATER.CO.U</u> <<u>DEVELOPER.SERVICES@THAMESWATER.CO.UK</u>> Sent: 20 August 2020 09:50 To: Jasmine Katsoulis <<u>j.katsoulis@WoodsHardwick.com</u>> Subject: RE: RE: RE: RE: RE: FW: Thames Water Pre-Planning Enquiry Request. TW ref. DS6075257

Dear Sir/Madam

Following your Pre-Planning Enquiry for the above site, please find our formal response enclosed.

Please note, Thames Water do not envisage any capacity concerns to the waste water infrastructure at this stage of your development.

Should you have any further queries, please do not hesitate to contact me again.

Kind Regards

Artur Jaroma Developer Services – Sewer Adoptions Engineer Office: 0800 009 3921 Mobile: 077476 47276

Get advice on making your sewer connection correctly at connectright.org.uk

Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>

Original Text

- 1	ICDCUDC							
the second	ICPSUDS						ă	
Micro	ICP SUDS Input (FSR	Method)					Results	
orennege	Return Period (Years)	100	Partly L	Irbanised Ca	itchment (QBA	R)	QBAR rural (1/s)	
	Area (ha)	5.250	-	9.6	- 1			
	CAAD (mm)	700	Olban		0.000			
	SAAR (mm) Map	/00	Region	Region 5	~		QBAR urban	n (l/s)
	Soil	0.300	-				9.6	
	Growth Curve		(None)		Calcul	ate		
	Return Period Flood							
IH 124	Return Period Flood Region	QBAR (I/s)	Q (100yrs) (I/s)	Q (1 yrs) (l/s)	Q (30 yrs) (l/s)	Q (100 yrs) (l/s)]	^
IH 124	Return Period Flood Region	QBAR (I/s) 9.6	Q (100yrs) (l/s) 23.7	Q (1 yrs) (Vs) 8.1	Q (30 yrs) (Vs) 18.1	Q (100 yrs) (I/s) 23.7		^
IH 124 ICP SUDS	Return Period Flood Region Region 1 Region 2	QBAR (I/s) 9.6 9.6	Q (100yrs) (I/s) 23.7 25.2	Q (1 yrs) (Vs) 8.1 8.3	Q (30 yrs) (Vs) 18.1 18.2	Q (100 yrs) (l/s) 23.7 25.2		^
IH 124 ICP SUDS ADAS 345	Return Period Flood Region Region 1 Region 2 Region 3	QBAR (Vs) 9.6 9.6 9.6	Q (100yrs) (I/s) 23.7 25.2 19.9	Q (1 yrs) (Vs) 8.1 8.3 8.2	Q (30 yrs) (Vs) 18.1 18.2 16.8	Q (100 yrs) (Vs) 23.7 25.2 19.9		^
IH 124 ICP SUDS ADAS 345	Return Period Flood Region Region 1 Region 2 Region 3 Region 4	QBAR (I/s) 9.6 9.6 9.6 9.6	Q (100yrs) (l/s) 23.7 25.2 19.9 24.6	Q (1 yrs) (l/s) 8.1 8.3 8.2 7.9	Q (30 yrs) (Us) 18.1 18.2 16.8 18.7	Q (100 yrs) (Vs) 23.7 25.2 19.9 24.6		^
IH 124 ICP SUDS ADAS 345 FEH	Return Period Flood Region Region 1 Region 2 Region 3 Region 4 Region 5	QBAR (I/s) 9.6 9.6 9.6 9.6 9.6	Q (100yrs) (I/s) 23.7 25.2 19.9 24.6 34.1	Q (1 yrs) (Vs) 8.1 8.3 8.2 7.9 8.3	Q (30 yrs) (Us) 18.1 18.2 16.8 18.7 23.0	Q (100 yrs) (Vs) 23.7 25.2 19.9 24.6 34.1		Â
IH 124 ICP SUDS ADAS 345 FEH ReFH2	Return Period Flood Region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6/Region 7	QBAR (I/s) 9.6 9.6 9.6 9.6 9.6 9.6 9.6	Q (100yrs) (l/s) 23.7 25.2 19.9 24.6 34.1 30.5	Q (1 yrs) (l/s) 8.1 8.3 8.2 7.9 8.3 8.3 8.1	Q (30 yrs) (Vs) 18.1 18.2 16.8 18.7 23.0 21.7	Q (100 yrs) (Us) 23.7 25.2 19.9 24.6 34.1 30.5		Î
IH 124 ICP SUDS ADAS 345 FEH ReFH2	Return Period Flood Region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6/Region 7 Region 8	QBAR (Vs) 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	Q (100yrs) (Vs) 23.7 25.2 19.9 24.6 34.1 30.5 23.2	Q (1 yrs) (Vs) 8.1 8.3 8.2 7.9 8.3 8.1 7.5	Q (30 yrs) (Vs) 18.1 18.2 16.8 18.7 23.0 21.7 18.2	Q (100 yrs) (Vs) 23.7 25.2 19.9 24.6 34.1 30.5 23.2		Î
IH 124 ICP SUDS ADAS 345 FEH ReFH2 Greenfield Volume	Return Period Flood Region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6/Region 7 Region 8 Region 9	QBAR (I/s) 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	Q (100yrs) (l/s) 23.7 25.2 19.9 24.6 34.1 30.5 23.2 20.9	Q (1 yrs) (l/s) 8.1 8.3 8.2 7.9 8.3 8.1 7.5 8.4	Q (30 yrs) (Vs) 18.1 18.2 16.8 18.7 23.0 21.7 18.2 16.9	Q (100 yrs) (Us) 23.7 25.2 19.9 24.6 34.1 30.5 23.2 20.9		î
IH 124 ICP SUDS ADAS 345 FEH ReFH2 Greenfield Volume (ReFH2)	Return Period Flood Region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6/Region 7 Region 8 Region 9 Region 10	QBAR (Vs) 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	Q (100yrs) (Vs) 23.7 25.2 19.9 24.6 34.1 30.5 23.2 20.9 19.9	Q (1 yrs) (l/s) 8.1 8.3 8.2 7.9 8.3 8.1 7.5 8.4 8.3	Q (30 yrs) (Us) 18.1 18.2 16.8 18.7 23.0 21.7 18.2 16.9 16.2	Q (100 yrs) (Us) 23.7 25.2 19.9 24.6 34.1 30.5 23.2 20.9 19.9		*

Appendix L Proposed Drainage Strategy

NOTES

1. Contractors must check all dimensions on site. Only figured dimensions are to be worked from. Discrepancies must be reported to the Architect or Engineer before proceeding. © This drawing is copyright.

2. Reproduced from OS Sitemap ® by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office. © Crown copyright 2008. All rights reserved. Licence number 100007126.

3. Until technical approval has been obtained from the relevant authorities, all drawings are issued as preliminary and not for construction. Should the Contractor commence site work prior to approval being given it is entirely at his own risk.

SAFETY, HEALTH AND ENVIRONMENTAL

In addition to the hazards, risks normally associated with the type of work detailed on this drawing, note the following significant risks and information.

Construction:

4

1. There is an existing HV cable which crosses the site.

For information relating to end use, maintenance, demolition, see the health and safety file.

It is assumed that all works will be carried out by a competent Contractor, where appropriate, to an approved method statement.

Site Boundary

Proposed Surface Water Network

Proposed Foul Water Network

Proposed Permeable Paving

Proposed Swale

REV DESCRIPT	ION			DRN	CHD	DATE
PRELIMINA	RY		ATION		TENDE	R
	TION	T				
SCALE	1:500 @	9 A1	DATE	20.	.08.20	20
DRAWN	YK		СНК	JG	F	
DRAWING NO.	18770-F	ELL-5-201	REV	-		
TITLE	Land I Colne	North of F y Heath	Fellows I	_ane		
DETAILS	Propo Sheet	sed Drain 1 of 2	age Stra	tegy	,	

Woods Hardwick Planning Surveying Architecture Engineering

BEDFORD : HEAD OFFICE 15-17 Goldington Road Bedford MK40 3NH T: +44 (0) 1234 268862

ONLINE: mail@woodshardwick.com | woodshardwick.com

Fort Dunlop, Fort Parkway Birmingham B24 9FE T: +44 (0) 121 6297784

BIRMINGHAM

PLEASE CONSIDER THE ENVIRONMENT BEFORE PRINTING THIS DRAWING

NOTES

1. Contractors must check all dimensions on site. Only figured dimensions are to be worked from. Discrepancies must be reported to the Architect or Engineer before proceeding. © This drawing is copyright.

2. Reproduced from OS Sitemap ® by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office. © Crown copyright 2008. All rights reserved. Licence number 100007126.

3. Until technical approval has been obtained from the relevant authorities, all drawings are issued as preliminary and not for construction. Should the Contractor commence site work prior to approval being given it is entirely at his own risk.

SAFETY, HEALTH AND ENVIRONMENTAL

In addition to the hazards, risks normally associated with the type of work detailed on this drawing, note the following significant risks and information.

Construction:

1. There is an existing HV cable which crosses the site.

For information relating to end use, maintenance, demolition, see the health and safety file.

It is assumed that all works will be carried out by a competent Contractor, where appropriate, to an approved method statement.

Site Boundary

Proposed Surface Water Network

Proposed Foul Water Network

Proposed Permeable Paving

Proposed Swale

REV DESCRIPT	ION			DRN	CHD	DATE	
PRELIMINA	RY		TION		TENDE	R	
	TION						
SCALE	1:500 (a A2	DATE	20.	08.20	20	
DRAWN	YK		СНК	JG	F		
DRAWING NO.	18770-	FELL-5-202	REV	-			
TITLE	Land North of Fellows Lane Colney Heath						
DETAILS	Proposed Drainage Strategy Sheet 2 of 2						

Woods Hardwick Planning | Surveying

Architecture | Engineering |

BEDFORD : HEAD OFFICE

15-17 Goldington Road

T: +44 (0) 1234 268862

Bedford MK40 3NH

BIRMINGHAM Fort Dunlop, Fort Parkway Birmingham B24 9FE T: +44 (0) 121 6297784

ONLINE: mail@woodshardwick.com | woodshardwick.com

Appendix M Drainage Calculations

File: 18770 OUTLINE APP SWS.Page 1Network: Storm Network 1John Freeman20/08/2020

Design Settings

Rainfall Methodology	FEH-00	Time of Entry (mins)	6.00
Namian Methodology		Time of Endry (Timis)	0.00
Return Period (years)	100	Maximum Time of Concentration (mins)	30.00
Additional Flow (%)	40	Maximum Rainfall (mm/hr)	50.0
C (1km)	-0.029	Minimum Velocity (m/s)	1.00
D1 (1km)	0.300	Connection Type	Level Soffits
D2 (1km)	0.302	Minimum Backdrop Height (m)	0.200
D3 (1km)	0.294	Preferred Cover Depth (m)	1.200
E (1km)	0.324	Include Intermediate Ground	\checkmark
F (1km)	2.454	Enforce best practice design rules	\checkmark
CV	0.750		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.102	6.00	75.500	1200	521186.287	205760.078	1.500
2	0.000		75.500	1200	521194.056	205764.144	1.552
3	0.100	6.00	75.492	1350	521199.897	205765.339	1.729
18	0.133	6.00	75.276	1350	521160.812	205822.575	1.575
19	0.000		75.698	1350	521192.336	205812.006	2.195
4	0.191	6.00	75.809	1500	521199.897	205810.705	2.577
20	0.102	6.00	75.800	1200	521262.129	205837.776	1.425
21	0.095	6.00	75.797	1200	521266.210	205850.397	1.501
5	0.066	6.00	75.236	1500	521217.365	205866.193	2.273
6	0.000		75.000	1500	521224.373	205888.455	2.089
7	0.043	6.00	75.000	1800	521223.408	205901.064	2.192
22	0.278	6.00	75.504	1350	521166.496	205895.913	1.575
8	0.000		74.944	1800	521214.333	205919.481	2.182
9	0.018	6.00	75.018	1800	521212.514	205926.227	2.270
23	0.089	6.00	76.000	1200	521290.517	205922.086	1.500
24	0.094	6.00	75.980	1350	521294.862	205935.646	1.640
25	0.000		75.583	1350	521256.954	205947.794	1.575
26	0.000		75.467	1350	521246.550	205948.409	1.575
27	0.128	6.00	75.342	1350	521234.203	205945.549	1.650
28	0.023	6.00	75.208	1350	521222.068	205939.864	1.650
10	0.000		75.107	1800	521214.321	205933.750	2.374
11	0.064	6.00	74.845	1800	521199.220	205944.285	2.149
12	0.000		74.800	1800	521190.659	205962.357	2.144
29	0.000	6.00	74.500	1800	521139.727	205976.078	1.500
30	0.103	6.00	74.700	1800	521153.158	205964.357	1.800
31	0.040	6.00	74.700	1800	521165.217	205973.998	1.831
13	0.000		74.800	1800	521189.355	205972.213	2.365
14	0.000		74.809	1800	521194.505	205981.642	2.395
15	0.047	6.00	74.911	1800	521201.709	205984.839	2.513
32	0.157	6.00	75.300	1200	521247.550	205994.839	1.500
16	0.000		75.151	1800	521220.488	205988.936	2.791
17	0.000		75.200	1800	521222.762	205978.513	2.861

USE\	MY	•	Woods Ha	rdwick Ltd		File: 187 Network John Free 20/08/20	70 OUTL : Storm M eman)20	SWS. 1	Page 2		
		·			<u>Links (</u>	Input)			·		
Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	1	2	8.769	0.600	74.000	73.948	0.052	168.0	300	6.12	50.0
1.001	2	3	5.962	0.600	73.948	73.913	0.035	168.0	300	6.20	50.0
1.002	3	4	45.366	0.600	73.763	73.382	0.381	119.1	450	6.61	50.0
2.000	18	19	33.249	0.600	73.701	73.503	0.198	168.0	375	6.40	50.0
2.001	19	4	7.672	0.600	73.503	73.457	0.046	168.0	375	6.49	50.0
1.003	4	5	58.173	0.600	73.232	73.038	0.194	300.0	600	7.30	50.0
3.000	20	21	13.264	0.600	74.375	74.296	0.079	168.0	225	6.22	50.0
3.001	21	5	51.336	0.600	74.296	73.413	0.883	58.1	225	6.72	50.0
1.004	5	6	23.339	0.600	72.963	72.911	0.052	450.0	675	7.62	50.0
1.005	6	7	12.646	0.600	72.911	72.883	0.028	450.0	675	7.79	50.0
1.006	7	8	20.531	0.600	72.808	72.762	0.046	450.0	750	8.05	50.0
4.000	22	8	53.328	0.600	73.929	73.137	0.792	67.3	375	6.40	50.0
1.007	8	9	6.987	0.600	72.762	72.748	0.014	500.0	750	8.14	50.0
1.008	9	10	7.737	0.600	72.748	72.733	0.015	500.0	750	8.25	50.0
5.000	23	24	14.239	0.600	74.500	74.415	0.085	168.0	300	6.20	50.0
5.001	24	25	39.807	0.600	74.340	74.008	0.332	119.9	375	6.60	50.0
5.002	25	26	10.422	0.600	74.008	73.892	0.116	89.8	375	6.69	50.0
5.003	26	27	12.674	0.600	73.892	73.767	0.125	101.4	375	6.81	50.0
5.004	27	28	13.401	0.600	73.692	73.558	0.134	100.0	450	6.92	50.0
5.005	28	10	9.869	0.600	73.558	73.457	0.101	97.7	450	7.00	50.0
1.009	10	11	18.413	0.600	72.733	72.696	0.037	500.0	750	8.49	50.0
1.010	11	12	19.997	0.600	72.696	72.656	0.040	500.0	750	8.76	50.0
1.011	12	13	9.942	0.600	72.656	72.435	0.221	45.0	750	8.80	50.0
6.000	29	30	17.826	0.600	73.000	72.900	0.100	178.3	750	6.14	50.0
6.001	30	31	15.439	0.600	72.900	72.869	0.031	500.0	750	6.35	50.0
6.002	31	13	24.204	0.600	72.869	72.585	0.284	85.2	750	6.48	50.0
1.012	13	14	10.744	0.600	72.435	72.414	0.021	500.0	750	8.95	50.0
1.013	14	15	7.882	0.600	72.414	72.398	0.016	500.0	750	9.05	50.0
1.014	15	16	19.221	0.600	72.398	72.360	0.038	500.0	750	9.31	50.0
7.000	32	16	27.698	0.600	73.800	73.635	0.165	168.0	300	6.38	50.0
1.015	16	17	10.668	0.600	72.360	72.339	0.021	500.0	750	9.45	50.0

CA

Pipeline Schedule

Link	Length	Slope	Dia		Link		US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)		Туре		(m)	(m)	(m)	(m)	(m)	(m)
1.000	8.769	168.0	300	Circular	_Default Set	wer Type	75.500	74.000	1.200	75.500	73.948	1.252
1.001	5.962	168.0	300	Circular	_Default Se	wer Type	75.500	73.948	1.252	75.492	73.913	1.279
1.002	45.366	119.1	450	Circular	_Default Se	wer Type	75.492	73.763	1.279	75.809	73.382	1.977
2.000	33.249	168.0	375	Circular	_Default Se	wer Type	75.276	73.701	1.200	75.698	73.503	1.820
2.001	7.672	168.0	375	Circular	_Default Set	wer Type	75.698	73.503	1.820	75.809	73.457	1.977
1.003	58.173	300.0	600	Circular	_Default Se	wer Type	75.809	73.232	1.977	75.236	73.038	1.598
3.000	13.264	168.0	225	Circular	_Default Set	wer Type	75.800	74.375	1.200	75.797	74.296	1.276
		Link	US	Dia	Node	MH	DS	Dia	Node	MH		
			Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре		
		1.000	1	1200	Manhole	Adoptable	2	1200	Manhole	Adoptab	le	
		1.001	2	1200	Manhole	Adoptable	3	1350	Manhole	Adoptab	le	
		1.002	3	1350	Manhole	Adoptable	2 4	1500	Manhole	Adoptab	le	
		2.000	18	1350	Manhole	Adoptable	19	1350	Manhole	Adoptab	le	
		2.001	19	1350	Manhole	Adoptable	4	1500	Manhole	Adoptab	le	
		1.003	4	1500	Manhole	Adoptable	5	1500	Manhole	Adoptab	le	
		3.000	20	1200	Manhole	Adoptable	21	1200	Manhole	Adoptab	le	

Flow+ v9.0 Copyright © 1988-2020 Causeway Software Solutions Limited

Pipeline Schedule

Link	Length (m)	Slope (1·X)	Dia (mm)		Link Type		US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
3.001	51.336	58.1	225	Circular	Default Se	wer Type	75.797	74.296	1.276	75.236	73.413	1.598
1.004	23.339	450.0	675	Circular	Default Se	wer Type	75.236	72.963	1.598	75.000	72.911	1.414
1.005	12.646	450.0	675	Circular	_ Default Se	wer Type	75.000	72.911	1.414	75.000	72.883	1.442
1.006	20.531	450.0	750	Circular	Default Se	wer Type	75.000	72.808	1.442	74.944	72.762	1.432
4.000	53.328	67.3	375	Circular	 Default Se	wer Type	75.504	73.929	1.200	74.944	73.137	1.432
1.007	6.987	500.0	750	Circular	_Default Se	wer Type	74.944	72.762	1.432	75.018	72.748	1.520
1.008	7.737	500.0	750	Circular	_Default Se	wer Type	75.018	72.748	1.520	75.107	72.733	1.624
5.000	14.239	168.0	300	Circular	_Default Se	wer Type	76.000	74.500	1.200	75.980	74.415	1.265
5.001	39.807	119.9	375	Circular	_Default Se	wer Type	75.980	74.340	1.265	75.583	74.008	1.200
5.002	10.422	89.8	375	Circular_	_Default Se	wer Type	75.583	74.008	1.200	75.467	73.892	1.200
5.003	12.674	101.4	375	Circular_	_Default Se	wer Type	75.467	73.892	1.200	75.342	73.767	1.200
5.004	13.401	100.0	450	Circular	_Default Se	wer Type	75.342	73.692	1.200	75.208	73.558	1.200
5.005	9.869	97.7	450	Circular	_Default Se	wer Type	75.208	73.558	1.200	75.107	73.457	1.200
1.009	18.413	500.0	750	Circular	_Default Se	wer Type	75.107	72.733	1.624	74.845	72.696	1.399
1.010	19.997	500.0	750	Circular_	_Default Se	wer Type	74.845	72.696	1.399	74.800	72.656	1.394
1.011	9.942	45.0	750	Circular_	_Default Se	wer Type	74.800	72.656	1.394	74.800	72.435	1.615
6.000	17.826	178.3	750	Circular_	_Default Se	wer Type	74.500	73.000	0.750	74.700	72.900	1.050
6.001	15.439	500.0	750	Circular_	_Default Se	wer Type	74.700	72.900	1.050	74.700	72.869	1.081
6.002	24.204	85.2	750	Circular_	_Default Se	wer Type	74.700	72.869	1.081	74.800	72.585	1.465
1.012	10.744	500.0	750	Circular_	_Default Se	wer Type	74.800	72.435	1.615	74.809	72.414	1.645
1.013	7.882	500.0	750	Circular_	_Default Se	wer Type	74.809	72.414	1.645	74.911	72.398	1.763
1.014	19.221	500.0	750	Circular_	_Default Se	wer Type	74.911	72.398	1.763	75.151	72.360	2.041
7.000	27.698	168.0	300	Circular_	_Default Se	wer Type	75.300	73.800	1.200	75.151	73.635	1.216
1.015	10.668	500.0	750	Circular_	_Default Se	wer Type	75.151	72.360	2.041	75.200	72.339	2.111
		Link	US	Dia	Node	МН	DS	Dia	Node	мн		
		Link	US Node	Dia (mm)	Node Type	МН Туре	DS Node	Dia (mm)	Node Type	МН Туре		
		Link 3.001	US Node 21	Dia (mm) 1200	Node Type Manhole	MH Type Adoptable	DS Node 5	Dia (mm) 1500	Node Type Manhole	MH Type Adoptab	le	
		Link 3.001 1.004	US Node 21 5	Dia (mm) 1200 1500	Node Type Manhole Manhole	MH Type Adoptable Adoptable	DS Node 5 e 6	Dia (mm) 1500 1500	Node Type Manhole Manhole	MH Type Adoptab Adoptab	le le	
		Link 3.001 1.004 1.005	US Node 21 5 6	Dia (mm) 1200 1500 1500	Node Type Manhole Manhole Manhole	MH Type Adoptable Adoptable	DS Node 5 6 6 7	Dia (mm) 1500 1500 1800	Node Type Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab	le le	
		Link 3.001 1.004 1.005 1.006	US Node 21 5 6 7	Dia (mm) 1200 1500 1500 1800	Node Type Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable	DS Node 5 6 7 8	Dia (mm) 1500 1500 1800 1800	Node Type Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab	le le le	
		Link 3.001 1.004 1.005 1.006 4.000	US Node 21 5 6 7 22	Dia (mm) 1200 1500 1500 1800 1350	Node Type Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 8 8	Dia (mm) 1500 1500 1800 1800 1800	Node Type Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab	le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007	US Node 21 5 6 7 22 8	Dia (mm) 1200 1500 1500 1800 1350 1800	Node Type Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 8 8 9	Dia (mm) 1500 1500 1800 1800 1800 1800	Node Type Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008	US Node 21 5 6 7 22 8 9 22	Dia (mm) 1200 1500 1500 1800 1350 1800 1800	Node Type Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 8 8 9 9 10 24	Dia (mm) 1500 1500 1800 1800 1800 1800 1800	Node Type Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000	US Node 21 5 6 7 22 8 9 23 24	Dia (mm) 1200 1500 1500 1800 1350 1800 1800 1200	Node Type Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 8 9 9 10 24 25	Dia (mm) 1500 1500 1800 1800 1800 1800 1800 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001	US Node 21 5 6 7 22 8 9 23 23 24 25	Dia (mm) 1200 1500 1500 1800 1350 1800 1800 1200 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 8 9 9 10 24 24 25 26	Dia (mm) 1500 1500 1800 1800 1800 1800 1800 1350 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.002	US Node 21 5 6 7 22 8 9 23 23 24 25 26	Dia (mm) 1200 1500 1500 1800 1350 1800 1800 1200 1350 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 9 10 24 24 25 26 27	Dia (mm) 1500 1500 1800 1800 1800 1800 1800 1350 1350 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004	US Node 21 5 6 7 22 8 9 23 24 25 26 27	Dia (mm) 1200 1500 1500 1800 1350 1800 1200 1350 1350 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 9 10 24 24 25 26 26 27 28	Dia (mm) 1500 1500 1800 1800 1800 1800 1800 1350 1350 1350 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28	Dia (mm) 1200 1500 1500 1800 1350 1800 1200 1350 1350 1350 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 9 4 10 24 25 26 27 28 20 10	Dia (mm) 1500 1500 1800 1800 1800 1800 1800 1350 1350 1350 1350 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.001 5.002 5.003 5.004 5.005 1.009	US Node 21 5 6 7 22 8 9 23 24 23 24 25 26 27 28 10	Dia (mm) 1200 1500 1800 1350 1800 1350 1350 1350 1350 1350 1350 1350	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 8 9 10 24 25 26 27 26 27 28 210 211	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab		
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005 1.009 1.010	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28 10 11	Dia (mm) 1200 1500 1500 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 9 10 24 25 26 27 28 27 28 10 21 11 20 11	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005 1.009 1.010 1.011	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28 10 11 12	Dia (mm) 1200 1500 1500 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 9 6 10 24 25 26 27 28 26 27 28 10 21 11 2 12 21 21 21 21 21 21 21 21 21 2	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le le	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005 1.009 1.010 1.011 6.000	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28 10 11 12 29	Dia (mm) 1200 1500 1500 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 9 10 24 25 26 27 28 20 27 28 10 21 21 21 21 21 21 21 21 21 21 21 21 21	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le le l	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005 1.009 1.010 1.011 6.000 6.001	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28 10 11 12 29 30	Dia (mm) 1200 1500 1500 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable Adoptable	DS Node 5 6 7 8 8 9 10 24 25 26 27 26 27 28 20 27 28 10 21 21 21 23 20 21 23 20 21 23 20 20 21 23 20 20 21 23 20 20 20 20 20 20 20 20 20 20 20 20 20	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le le l	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005 1.009 1.010 1.011 6.000 6.001 6.002	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28 10 11 12 29 30 31	Dia (mm) 1200 1500 1500 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable	DS Node 5 6 7 8 8 9 10 24 25 26 27 26 27 28 10 24 25 26 27 28 10 21 11 22 13 20 31 21 31 21 31	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le le l	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005 1.009 1.010 1.011 6.000 6.001 6.002 1.012	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28 10 11 12 29 30 31 13	Dia (mm) 1200 1500 1500 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable	DS Node 5 6 7 8 8 9 10 24 25 26 27 28 26 27 28 10 24 25 26 27 28 10 21 21 23 20 21 23 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 21 21 21 21 21 21 21 21 21 21 21 21	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le le l	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005 1.009 1.010 1.011 6.000 6.001 6.002 1.012 1.013	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28 10 11 12 29 30 31 13 14	Dia (mm) 1200 1500 1500 1800 1350 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable	DS Node 5 6 7 8 8 9 10 24 25 26 27 28 26 27 28 10 24 25 26 27 28 10 21 11 2 13 2 30 2 13 2 13 2 14 2 5 2 13 2 14 2 5	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	le le le le le le le le le le le le le le le l	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005 1.009 1.010 1.011 6.000 6.001 6.002 1.012 1.013 1.014	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28 10 11 12 29 30 31 13 14 15	Dia (mm) 1200 1500 1500 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable	DS Node 5 6 7 8 8 9 10 24 25 26 27 28 10 24 25 26 27 28 10 24 25 26 27 28 10 21 11 2 30 2 11 2 31 2 31 2 31 2 31	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole	MH Type Adoptab	le l	
		Link 3.001 1.004 1.005 1.006 4.000 1.007 1.008 5.000 5.001 5.002 5.003 5.004 5.005 1.009 1.010 1.011 6.000 6.001 6.002 1.012 1.013 1.014 7.000	US Node 21 5 6 7 22 8 9 23 24 25 26 27 28 10 11 12 29 30 31 13 14 15 32	Dia (mm) 1200 1500 1500 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	MH Type Adoptable	DS Node 5 6 7 8 8 9 10 24 25 26 27 26 27 28 10 24 25 26 27 28 10 21 11 12 23 11 12 13 20 11 11 21 21 21 21 21 21 21 21 21 21 21	Dia (mm) 1500 1500 1800 1800 1800 1800 1350 1350 1350 1350 1350 1350 1350 13	Node Type Manhole	MH Type Adoptab	le le le le le le le le le le le le le le le le le l	

File: 18770 OUTLINE APP SWS.Page 4Network: Storm Network 1John Freeman20/08/202020/08/2020

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
1	521186.287	205760.078	75.500	1.500	1200				
						0	1.000	74.000	300
2	521194.056	205764.144	75.500	1.552	1200	1	1.000	73.948	300
						0	1.001	73.948	300
3	521199.897	205765.339	75.492	1.729	1350		1.001	73.913	300
10	524460.042	205022 575	75.076	4 5 7 5	4250	0	1.002	73.763	450
18	521160.812	205822.575	/5.2/6	1.575	1350	\bigcirc			
10	524402 226	205042.000	75 600	2 4 0 5	4250	0	2.000	73.701	375
19	521192.336	205812.006	/5.698	2.195	1350		2.000	/3.503	375
						0	2.001	73.503	375
4	521199.897	205810.705	75.809	2.577	1500		2.001	73.457	375
							1.002	73.232	450 600
20	521262.129	205837.776	75.800	1.425	1200	Å			
						0	3.000	74.375	225
21	521266.210	205850.397	75.797	1.501	1200	1	3.000	74.296	225
						ı [′] 0	3.001	74.296	225
5	521217.365	205866.193	75.236	2.273	1500		3.001	73.413	225
							1.003	73.038	600
						2 0	1.004	72.963	675
6	521224.373	205888.455	75.000	2.089	1500		1.004	72.911	675
						1' 0	1.005	72.911	675
7	521223.408	205901.064	75.000	2.192	1800		1.005	72.883	675
						1 O	1.006	72.808	750
22	521166.496	205895.913	75.504	1.575	1350	⊖→ ⁰			
						0	4.000	73.929	375
8	521214.333	205919.481	74.944	2.182	1800		4.000	73.137	375
							1.006	12.762	750
						2 0	1.007	72.762	750

File: 18770 OUTLINE APP SWS. Page 5 Network: Storm Network 1 John Freeman 20/08/2020

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
9	521212.514	205926.227	75.018	2.270	1800	Ŷ	1	1.007	72.748	750
23	521290.517	205922.086	76.000	1.500	1200		0	1.008	72.748	750
							0	5.000	74.500	300
24	521294.862	205935.646	75.980	1.640	1350	0 <	1	5.000	74.415	300
						1	0	5.001	74.340	375
25	521256.954	205947.794	75.583	1.575	1350	0 <1	1	5.001	74.008	375
							0	5.002	74.008	375
26	521246.550	205948.409	75.467	1.575	1350	0 <	1	5.002	73.892	375
							0	5.003	73.892	375
27	521234.203	205945.549	75.342	1.650	1350	0	1	5.003	73.767	375
							0	5.004	73.692	450
28	521222.068	205939.864	75.208	1.650	1350		1	5.004	73.558	450
10	524244 224	205022 750	75 4 0 7	2 274	1000		0	5.005	73.558	450
10	521214.321	205933.750	/5.10/	2.374	1800	⁰ ~ ¹	1	5.005	/3.45/	450 750
						φ	2	1.000	72.733	750
11	521199 220	205944 285	74 845	2 149	1800	2	1	1.009	72.733	750
	521155.220	203344.203	74.040	2.145	1000	Å,	-	1.005	72.000	, 30
10	E21100 6E0	205062 257	74 900	2 1 4 4	1000	0	0	1.010	72.696	750
12	521190.059	203902.337	74.800	2.144	1800	Â.	T	1.010	72.050	750
20	521120 727	205076 070	74 500	1 500	1800	1	0	1.011	72.656	750
29	521139.727	205976.078	74.500	1.500	1800					
		205054 257		4 0 0 0	4000		0	6.000	73.000	750
30	521153.158	205964.357	74.700	1.800	1800	1	1	6.000	72.900	750
24	524465 245	205032.002	74 700	4 6 6 4	4000		0	6.001	72.900	750
31	521165.217	205973.998	74.700	1.831	1800	→ o	1	6.001	72.869	750
						1´	0	6.002	72.869	750

File: 18770 OUTLINE APP SWS. Page 6 Network: Storm Network 1 John Freeman 20/08/2020

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Li	nk	IL (m)	Dia (mm)
13	521189.355	205972.213	74.800	2.365	1800	ð	1 6.0	002	72.585	750
						1-0	2 1.0	011	72.435	750
						2	0 1.0	012	72.435	750
14	521194.505	205981.642	74.809	2.395	1800		1 1.0	012	72.414	750
						1	0 1.0	013	72.414	750
15	521201.709	205984.839	74.911	2.513	1800	1	1 1.0	013	72.398	750
							0 1.0	014	72.398	750
32	521247.550	205994.839	75.300	1.500	1200	₀ ← ⊖				
							0 7.0	000	73.800	300
16	521220.488	205988.936	75.151	2.791	1800		1 7.0	000	73.635	300
						2	2 1.0	014	/2.360	750
						v o	0 1.0	015	72.360	750
17	521222.762	205978.513	75.200	2.861	1800		1 1.0	015	72.339	750
			<u>Si</u>	mulation	<u>Setting</u>	<u>5</u>				
Raiı	nfall Methodol C (1) D1 (1) D2 (1) D3 (1)	ogy FEH-99 km) -0.029 km) 0.300 km) 0.302 km) 0.294	Su V Analy	E (1km) F (1km) mmer CV Vinter CV sis Speed	0.324 2.454 0.750 0.840 Norm	Drain I Addition Check	Skip Si Down T al Stora Discha Dischar	tead Time age (arge I Tge V	y State (mins) m³∕ha) Rate(s) ′olume	√ 240 20.0 x x
4 5	20 00	120	100 2	Storm Du	rations	480 600	720	I	000	1 4 4 0
15	30 60	120	180 2	.40 3	60	480 600	720		960	1440
	Ret	turn Period ((vears)	Climate Ch CC %)	nange A)	ddition) ۹ A)	al Area Additi 6) ((onal Fl Q %)	ow		
		100	•	40	•	0	. ,	0		
			<u>Node 1</u>	7 Online	Pump C	<u>ontrol</u>				
Repla	Fla ces Downstrea Invert Le	o Valve x Im Link √ vel (m) 72.33	39 Sw	Design D Design F vitch on d	epth (m Flow (l/s epth (m) 1.750 Sv) 5.0) 0.500	vitch o	ff de	pth (m)	0.100
			Depth (m) 0.001	Flow (I/s) 5.000	Depth (m) 2.800	Flow (I/s) 5.000				

		Woods Ha	ardwick Lt	d	File: 1877 Network:	0 OUTI Storm	LINE APP SWS Network 1	. Page 7					
CAUS				John Free 20/08/20	man 20								
Noda 20 Danth /Area Starage Structure													
Node 29 Depth/Area Storage Structure													
	Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)73.000Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)												
Depth (m) 0.000	Area Inf Area (m²) (m²) 671.0 0.0	Depth (m) 0.900	Area (m²) 1040.0	Inf Area (m²) 0.0	Depth (m) 0.901	Area (m²) 2035.0	Inf Area (m²) 0.0	Depth (m) 1.500 2	Area (m²) 590.0	Inf Area (m²) 0.0			
Node 18 Carpark Storage Structure													
	Base Inf Coefficient Side Inf Coefficient Safety	(m/hr) C (m/hr) C Factor 2	0.00000 0.00000	Time to ha	Invert Leve alf empty (I Widt	el (m) mins) h (m)	74.436 7 10.000	Slope (1:X) Depth (m)	100.0				
	P	orosity 1	L.00		Lengt	h (m)	10.000	in Depti (in)	0.000				
			<u>Node</u>	20 Carpark	Storage Str	ucture							
	Base Inf Coefficient Side Inf Coefficient	(m/hr) C (m/hr) C).00000).00000	Invert Level (m) 74.9 Time to half empty (mins) 8			74.960 8	Slope (1:X) Depth (m)	100.0				
	Safety P	2.0 1.00	Width (m) 10.000 Length (m) 10.000			10.000 10.000	Inf Depth (m)	0.600					
			Node	22 Carpark	Storage Str	ructure	<u>.</u>						
	Base Inf Coefficient Side Inf Coefficient	(m/hr) C (m/hr) C	0.00000 0.00000	Time to ha	Invert Leve alf empty (I	el (m) mins)	74.664 5	Slope (1:X) Depth (m)	100.0				
Porosity 1.00					Lengt	10.000	ini Deptii (iii)	0.000					
			Node	23 Carpark	Storage Str	ucture	<u>.</u>						
	Base Inf Coefficient Side Inf Coefficient	(m/hr) C (m/hr) C	0.00000	Time to ha	Invert Leve	el (m) mins)	75.160 0	Slope (1:X) Depth (m)	100.0				
	Safety P	Factor 2 orosity 1	2.0 1.00		Widt Lengt	h (m) h (m)	10.000 10.000	Inf Depth (m)	0.600				
			Node	e 32 Carpark	Storage Str	ucture							
	Base Inf Coefficient Side Inf Coefficient	(m/hr) C (m/hr) C).00000).00000	Time to ha	Invert Leve alf empty (I	el (m) mins)	74.460 3	Slope (1:X) Depth (m)	100.0				
	Safety P	Factor 2 orosity 1	2.0 1.00		Widt Lengt	h (m) h (m)	10.000 10.000	Inf Depth (m)	0.600				

File: 18770 OUTLINE APP SWS.Page 8Network: Storm Network 1John Freeman20/08/2020

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 56.80%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	75.500	1.500	97.2	3.7365	1.4148	FLOOD
15 minute winter	2	10	75.405	1.457	90.2	1.6479	0.0000	FLOOD RISK
15 minute summer	3	10	75.332	1.569	180.0	4.0615	0.0000	FLOOD RISK
15 minute winter	18	14	75.168	1.467	307.1	72.7454	0.0000	FLOOD RISK
15 minute winter	19	13	75.118	1.615	180.0	2.3113	0.0000	SURCHARGED
15 minute summer	4	10	75.176	1.944	349.2	6.3168	0.0000	SURCHARGED
15 minute winter	20	16	75.464	1.089	149.0	48.2323	0.0000	SURCHARGED
15 minute winter	21	15	75.434	1.138	90.6	2.7278	0.0000	SURCHARGED
15 minute summer	5	10	75.054	2.091	384.6	4.9095	0.0000	FLOOD RISK
15 minute winter	6	10	75.000	2.089	352.0	3.6913	7.3093	FLOOD
15 minute summer	7	10	74.974	2.166	345.0	6.3605	0.0000	FLOOD RISK
15 minute winter	22	14	75.230	1.301	314.6	58.0977	0.0000	FLOOD RISK
15 minute winter	8	11	74.944	2.182	546.3	5.5532	4.0423	FLOOD
15 minute summer	9	11	74.930	2.182	536.2	5.8974	0.0000	FLOOD RISK
15 minute winter	23	13	75.361	0.861	97.5	17.0819	0.0000	SURCHARGED
15 minute winter	24	12	75.326	0.986	149.6	2.5419	0.0000	SURCHARGED
15 minute winter	25	11	75.197	1.189	134.7	1.7020	0.0000	SURCHARGED
15 minute winter	26	11	75.161	1.269	137.0	1.8163	0.0000	SURCHARGED
15 minute winter	27	11	75.121	1.429	211.7	4.2612	0.0000	FLOOD RISK
15 minute winter	28	11	75.017	1.459	232.7	2.4949	0.0000	FLOOD RISK
15 minute winter	10	10	74.915	2.182	765.5	5.5536	0.0000	FLOOD RISK
15 minute summer	11	10	74.845	2.149	770.8	6.7479	9.1366	FLOOD
15 minute summer	12	10	74.792	2.136	778.8	5.4369	0.0000	FLOOD RISK
600 minute winter	29	585	74.111	1.111	100.3	1221.0760	0.0000	SURCHARGED
15 minute summer	30	10	74.651	1.751	1056.8	6.4579	0.0000	FLOOD RISK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	90.2	1.282	1.055	0.6175	
15 minute winter	2	1.001	3	90.6	1.287	1.060	0.4198	
15 minute summer	3	1.002	4	180.9	1.438	0.611	7.1879	
15 minute winter	18	2.000	19	-180.3	-1.635	-1.170	3.6673	
15 minute winter	19	2.001	4	-180.0	-1.632	-1.168	0.8462	
15 minute summer	4	1.003	5	262.2	1.228	0.662	16.3860	
15 minute winter	20	3.000	21	70.0	1.760	1.751	0.5275	
15 minute winter	21	3.001	5	72.0	1.851	1.053	2.0417	
15 minute summer	5	1.004	6	329.6	1.029	0.750	8.3315	
15 minute winter	6	1.005	7	355.2	0.997	0.808	4.5143	
15 minute summer	7	1.006	8	350.7	0.797	0.605	9.0361	
15 minute winter	22	4.000	8	192.3	2.170	0.788	5.8819	
15 minute winter	8	1.007	9	550.5	1.251	1.001	3.0751	
15 minute summer	9	1.008	10	541.2	1.230	0.985	3.4052	
15 minute winter	23	5.000	24	116.2	1.650	1.359	1.0027	
15 minute winter	24	5.001	25	134.7	1.597	0.737	4.3906	
15 minute winter	25	5.002	26	137.0	1.490	0.649	1.1495	
15 minute winter	26	5.003	27	139.3	1.436	0.701	1.3979	
15 minute winter	27	5.004	28	212.7	1.532	0.658	2.1233	
15 minute winter	28	5.005	10	233.9	1.777	0.715	1.5637	
15 minute winter	10	1.009	11	769.4	1.748	1.399	8.1039	
15 minute summer	11	1.010	12	778.8	1.770	1.417	8.8011	
15 minute summer	12	1.011	13	785.1	1.784	0.425	4.3757	
600 minute winter	29	6.000	30	-100.3	-0.413	-0.108	7.8456	
15 minute summer	30	6.001	31	-987.6	-2.244	-1.796	6.7950	

Flow+ v9.0 Copyright © 1988-2020 Causeway Software Solutions Limited

File: 18770 OUTLINE APP SWS.Page 9Network: Storm Network 1John Freeman20/08/2020

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 56.80%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	31	10	74.700	1.831	981.4	5.4600	8.9198	FLOOD
15 minute summer	13	10	74.754	2.319	958.2	5.9021	0.0000	FLOOD RISK
15 minute summer	14	10	74.754	2.340	191.4	5.9548	0.0000	FLOOD RISK
15 minute summer	15	10	74.754	2.356	276.1	6.8764	0.0000	FLOOD RISK
15 minute winter	32	13	74.813	1.013	214.6	33.5694	0.0000	SURCHARGED
15 minute summer	16	10	74.753	2.393	140.6	6.0902	0.0000	SURCHARGED
15 minute summer	17	10	74.755	2.416	64.8	6.1478	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	31	6.002	13	-964.2	-2.191	-0.720	10.6527	
15 minute summer	13	1.012	14	185.3	0.759	0.337	4.7287	
15 minute summer	14	1.013	15	239.3	0.618	0.435	3.4690	
15 minute summer	15	1.014	16	-141.5	0.367	-0.257	8.4596	
15 minute winter	32	7.000	16	137.3	1.950	1.605	1.9505	
15 minute summer	16	1.015	17	64.8	0.545	0.118	4.6952	
15 minute summer	17	Pump		5.0				74.6

Flow+ v9.0 Copyright © 1988-2020 Causeway Software Solutions Limited

Architecture Engi

15-17 Goldington Road

T : +44 (0) 1234 268862

Bedford MK40 3NH

BIRMINGHAM

Fort Dunlop, Fort Parkway Birmingham B24 9FE T : +44 (0) 0121 6297784 ONLINE mail@woodshardwick.com woodshardwick.com