Land off Bullen's Green Lane, Colney Heath St Albans

Flood Risk Assessment and Drainage Strategy

August 2020

Page Deliberately Blank.

Contents

1 Introduction 07
2 Existing Site and Proposed Development 11
3 Flood Risk 15
Risk of Flooding to the Development from Known Sources 19
Risk of Flooding from the Proposed Development 21
4 Proposed Development Drainage Strategy 23
Surface Water Drainage Strategy 25
Discharge Strategy 27
Foul Water Drainage Strategy 31
5 Summary and Conclusions 33

Appendices

Appendix A	Site Location Plan
Appendix B	Topographic Survey
Appendix C	Existing Drainage Plan
Appendix D	Illustrative Sketch Layout
Appendix E	Environment Agency - Flood Map for Planning
Appendix F	Environment Agency - Surface Water Flood Map
Appendix G	Paddock Geo Engineering Site Investigation Report Extracts
Appendix H	Thames Water - Wastewater Plan and Manhole Records
Appendix I	Environment Agency - Reservoir Flood Map
Appendix J	Thames Water Correspondence
Appendix K	Greenfield Calculations
Appendix L	Proposed Drainage Strategy
Appendix M	Drainage Calculations

Report Reference

Revision History

Rev	Amendments	Prepared By	Checked By	Date
First Issue	N/A	YK	JGF	24/08/2019

Page Deliberately Blank.

Introduction

Woods Hardwick

Page Deliberately Blank.

Introduction

The following paragraphs state the purpose of this document, and its constraints. A summary of existing and future site details; together with relevant pre-planning correspondence is also provided.
1.1 This Flood Risk Assessment (FRA) and Drainage Strategy has been prepared by Woods Hardwick Infrastructure LLP on behalf of Canton Ltd; in support of an Outline Planning Application for a proposed residential development comprising up to 100 residential dwellings on a site known as 'Land off Bullen's Green Lane, Colney Heath'. A copy of the Site Location Plan is provided in Appendix A.
1.2 The application boundary for the site covers an area of approximately 5.25ha of undeveloped land. In terms of flood risk, the proposed development is situated in Flood Zone 1, land which has less than a 1 in 1,000 annual probability of river or sea flooding.
1.3 Although the site is not shown as being at risk of flooding on the EA mapping, this report has been prepared on the basis that the total site area exceeds 1 ha.
1.4 This document has been written in accordance with the guidance contained within the Flood Risk and Coastal Change section of the Government's Planning Practice Guidance (FRCC, PPG).
1.5 This FRA concludes that the proposed development will not lead to the impedance of flood flows and will not increase the risk of flooding on the site itself, adjacent properties or to third parties situated either upstream or downstream of the site.
1.6 This document includes a Surface Water Drainage Strategy that identifies a suitable sustainable strategy for the disposal of surface water from the proposed development site that conforms with the guidance contained within the following documents:

- CIRIA C753 SuDS Manual (2015)
- Hertfordshire Council's LLFA Summary Guidance for Developers
1.7 The drainage principles were agreed during a pre-application meeting with the Lead Local Flood Authority (LLFA) in July 2020.
1.8 The proposed Drainage Strategy is based on a maximum allowance of 40% climate change in accordance with the Supplementary Planning Document for Sustainable Drainage Systems.
1.9 A suitable foul water outfall by way of direct connection to Thames Water assets located north east of the site in Bullens Green Lane has also been identified for the proposed development.
1.10 From the findings of this report, the development proposals are considered appropriate for the site location; therefore, should be fully supported through the Planning process in terms of Flood Risk, Foul and Surface Water Drainage.

Existing Site and Proposed Development

Page Deliberately Blank.

Existing Site and Proposed Development

The following paragraphs provide detail on the existing and proposed future residential development site; in relation to location, land uses, topography, as well as accessibility by travel and utilities.
2.1 The proposed development site, which sits within both St Albans District Council and Welwyn Hatfield Borough Council, is located in the eastern part of Colney Heath, approximately 3 km south west of Hatfield Town Centre and over 6km south east of St Albans Town Centre.
2.2 By road, Colney Heath is accessible from the A1(M) via the A414 North Orbital Road at Junction 3. The A414 North Orbital Road runs south of St Albans and provides a link between the A1 and M1. Colney Heath is also accessible from the M25 Junction 22 via Coursers Road.
2.3 The existing site covers an area of approximately 5.25ha of undeveloped agricultural land.
2.4 The site is bounded by Bullen's Green Lane and Fellows Lane to the east and south, respectively. Roestock Park abuts part of the western site boundary whilst existing residential properties abut the northern site boundary.
2.5 A Topographic Survey of the site was carried out by Woods Hardwick in June 2020. During the survey, information was recorded on the location and type of land features observed, including type of surface finishes, land boundaries, access routes, existing building outlines, vegetation and the geometric constraints of adjacent open channel ditches. All surveyed elevations were recorded at heights in metres above Ordnance Datum (mAOD). Ground levels and spot levels are also indicated on the drawing where they were recorded onsite. A copy of the Topographical Survey is provided in Appendix B.
2.6 In terms of existing drainage utilities, the Thames Water Wastewater Plans identifies the presence of existing Thames Water foul and surface water sewers serving the residential properties to the north and south of the site. There are no existing public sewers identified within the site boundary.
2.7 The topographical survey identifies existing sections of ditches adjacent to the site boundaries. However, the ditches do not appear to have an outfall beyond the site. It is considered likely that the ditches would have been put in place to drain the site with surface water eventually soaking into the ground. A drawing showing the existing drainage regime has been prepared and provided in Appendix C.
2.8 A Drainage Survey was carried out by Midland Survey Ltd in July 2020, following a pre-application meeting with the LLFA. The surveyors traced the Thames Water (TW) surface water networks to the north and south west of the site. Whilst the surveyors were unable to trace the entire routes due to third party land they confirmed it was highly likely that the network to the north discharges to the existing ditch north of Roestock Lane and the network to the south west discharges to the River Colne located west of the site.
2.9 The OS map indicates there is an existing drain which crosses the site. However, both the topographical and subsequent drainage survey could not find any evidence of this drain.
2.10 Notwithstanding this, the Ground Investigation Report prepared by Paddock Geo Engineering notes that the historic land drain running across the centre of the site was infilled in the last twenty years. A plastic suspected land drain pipe was observed at 0.9 m depth.
2.11 Development proposals comprise up to 100 residential dwellings, with associated infrastructure. The main vehicular access will be provided via a new access road off Bullens Green Lane. A copy of the Illustrative Sketch Layout is provided in Appendix D.

Flood Risk

Woods Hardwick

Page Deliberately Blank.

Flood Risk

The following paragraphs will identify whether or not there are any flood risks associated with the future development which may affect the proposals impact on the surrounding environment.
3.1 Following the increased frequency of flooding during recent years, much work has been undertaken at a national level to assess the relationship between new development and flood risk. This work resulted in the publication of Planning Policy Statement 25 (PPS25) in early 2007 with an update being released in March 2010.
3.2 Alongside the release of the National Planning Policy Framework in March 2012 the Technical Guidance to the NPPF (TGNPPF) was released serving as a flood risk-based addendum to the national planning guidance. These documents replaced PPS25; however, many of the principles set out in PPS25 remain relevant. The TGNPPF has since been replaced by the Planning Practice Guidance which continues to follow the same principles.
3.3 Table 1 of the FRCC, PPG seeks to define Flood Risk Zones. An extract of this table is shown in Figure 3.1 which follows.
3.4 The definition of the flood zones noted in Figure 3.1, reaffirms the guidance and categorisation included within PPS25 and TGNPPF.
3.5 Table 2 of the FRCC, PPG defines 'Flood Risk Vulnerability Classification'. Residential dwellings are classified under the 'More Vulnerable' category, as such the proposed development is considered to be a 'More Vulnerable' type of development.
3.6 The Environment Agency (EA) Flood Map demonstrates that the site lies within Flood Zone 1 and is therefore classified as having less than a 1 in 1,000 annual probability of flooding from rivers or seas. A copy of the EA Flood Map covering the immediate surrounding area for the proposed development is shown in Appendix E.
3.7 Table 3 of the FRCC, PPG compares the suitability of a development within a particular Flood Zone based on its corresponding Flood Risk Vulnerability Classification. Developments like the proposed which are classified as 'More Vulnerable', are deemed appropriate for development within Flood Zone 1. Therefore, there is no need to carry out a Sequential Test or Exception Test.

Flood Zone	Definition
Zone 1 Low Probability	Land having a less than 1 in 1,000 annual probability of river or sea flooding. (Shown as 'clear' on the Flood Map - all land outside Zones 2 and 3)
Zone 2 Medium Probability	Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding. (Land shown in light blue on the Flood Map)
Zone 3a High Probability	Land having a 1 in 100 or greater annual probability of river flooding; or Land having a 1 in 200 or greater annual probability of sea flooding.(Land shown in dark blue on the Flood Map)
Zone 3b The Functional Floodplain	This zone comprises land where water has to flow or be stored in times of flood. Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency. (Not separately distinguished from Zone 3a on the Flood Map)

Figure 3.1: Flood Zone Definitions - Planning Practice Guidance Extract

Risk of Flooding to the Development from Known Sources

3.8 Notwithstanding the above, presented below is a summary and analysis of the potential for the site to flood from known sources.

Flooding from Rivers and/ or Watercourses

3.9 The topographical survey identifies sections of existing ditches adjacent to the site boundaries.
3.10 The nearest EA watercourse is the River Colne, which is located over 0.5 km south west of the site.
2.12 The EA Flood Map enclosed in Appendix E shows that the proposed development land is situated in Flood Zone 1, land which has less than a 1 in 1,000 annual probability of river or sea flooding.

Flooding from the Sea

3.11 The nearest sea to the site is the North Sea, which is located some 90 km to the east. Given this distance and the fact that the site lies above 74 m AOD; the proposed residential scheme is not considered to be at risk of flooding from this source.

Flooding from Land

3.12 The potential for overland flows needs to be considered to ensure that neither the development nor adjacent land and/ or property, including that which may be under the responsibility of a third party is placed at an unacceptable risk of flooding.
3.13 From the EA Surface Water Flood Map for the site, which is enclosed in Appendix F, parts of the site are shown to be at low to high risk of surface water flooding. The area associated with high risk of surface water flooding on site is significantly small. Only areas adjacent to the north eastern and south western site boundaries are identified to be at medium risk of surface water flooding. In both scenarios flood depts are below 300 mm .
3.14 It would appear that the surface water flooding shown on the EA maps is due to surface water runoff emanating on the site following existing flow route/natural depressions towards the lower areas within the site.
3.15 It should be noted that, the SFRA for the area did not identify any historic surface water flood incidents in the vicinity of the site.
3.16 Notwithstanding the above, any surface water flows which may emanate on site will be managed within the drainage strategy following the development of the site.

Flooding from Groundwater

3.17 A Ground Investigation (GI) for the site was carried out by Paddock Geo Engineering (PGE) in July 2020, which included groundwater monitoring and Infiltration testing using the BRE Digest 365 methodology in machine excavated pits. A copy of the relevant extracts from the PGE Report Trial is included in Appendix G.
3.18 From the results of the intrusive ground sampling carried out by PGE; it can be concluded that the sub-strata composition of the site typically consists of topsoil/made ground underlain by Lowestoft Formation.
3.19 The report also notes that Groundwater was encountered within two of the shallow trial pits and within four of the six boreholes undertaken at depth of 0.9 m to 4 m , typically as seepages within the sand band and pockets of gravel. Subsequent groundwater monitoring of the standpipes indicates groundwater levels of between 1.40 m and 4.30 m .
3.20 The Level 1 Strategic Flood Risk Assessment (SFRA) for the area shows that the site does not lie within an area susceptible to groundwater flooding. In addition, the SFRA did not identify any historic groundwater flooding incidents in the vicinity of the site.
3.21 Based on the above information, it is anticipated that groundwater flooding should not be an issue to the proposed development.

Flooding from Sewers

3.22 A copy of the Thames Water Wastewater Plan illustrating the site extents and the immediate surrounding areas on Ordnance Survey (OS) mapping; together with approximate locations of Thames Water assets is enclosed in Appendix H.
3.23 From the plan, it can be seen that there are no Thames Water assets located within the site extent. However, Thames Water Wastewater Plans identifies the presence of existing Thames Water foul and surface water sewers serving the residential properties to the north and south of the site.
3.24 As previously mentioned, the OS map indicates there is an existing drain which crosses the site. However, it is noted this was infilled in the last twenty years.
3.25 Based on the evidence provided above, the proposed site is not considered to be at risk of flooding from this source.

Flooding from Reservoirs, Canals and Other Artificial Sources

3.26 The EA Reservoir Flood Map was acquired by Woods Hardwick Infrastructure LLP on the $13^{\text {th }}$ July 2020 from the EA's website. A copy of this mapping is enclosed in Appendix I. No part of the site or any immediate neighbouring land is shown to be at risk of flooding form reservoirs.
3.27 It should be noted that an occurrence of flooding from reservoirs is considered by the EA to be extremely rare. There has been no loss of life in the UK from reservoir flooding since 1925.

Risk of Flooding from the Proposed Development

3.28 Presented below is a summary and analysis of the potential for the site to exacerbate the risk of flooding to third parties both upstream and downstream.

Encroachment onto Floodplain

3.29 As outlined above, the site does not lie within the floodplain, there is therefore no risk of encroachment upon the floodplain.

Impedance of Flood Flows

As the site lies out of the floodplain there is no risk of the site impeding flood flows.

Contribution of Flood Flows by Development Drainage

3.31 As previously mentioned, the existing site covers an area of approximately 5.25ha of undeveloped open land.
3.32 The proposed development comprises up to 100 residential dwellings with associated infrastructure such as access roads, footways, and car parking. These elements will all contribute to the development's surface water discharge.
3.33 If considered appropriate at the detailed design stage, flooding routing measures will be incorporated to ensure that flood waters in excess of those for which the site has been designed to accommodate, will be routed away from the more vulnerable areas of the site.
3.34 The surface and foul water disposal strategies for the site are described in greater detail in the following 'Chapter 4 - Proposed Development Drainage Strategy'.

Climate Change

3.35 There is an increasing body of scientific evidence that suggests that the global climate is changing as a result of human activity. Past, present and future emissions of greenhouse gases are expected to cause significant climate change during this century.
3.36 The nature of climate change will vary for the UK. Projections of future climate change indicate that more frequent short-duration, high-intensity rainfall and more frequent periods of longduration rainfall can be expected. These kinds of changes will have implications on river-flooding and also localised flash flooding.
3.37 The Planning Practice Guidance requires developments to consider the potential impacts of climate change. In February 2016 the EA released new guidance titled 'Flood risk assessments: climate change allowances' (FRA:CC), in which the peak rainfall intensity allowance in small and urban catchments is assessed.
3.38 Considering the above, the climate change allowance that the proposed development's drainage strategy will be based on, is set at a value of $+40 \%$ ('Upper End’ value i.e. 90th Percentile, taken from Table 2 of the FRA: CC, representing the total potential change anticipated for 2070 to 2115).

Proposed Development Drainage Strategy

Page Deliberately Blank.

Proposed Development Drainage Strategy

The following paragraphs will provide detail on the proposed site generated foul and surface water disposal methods, design criteria, maintenance regimes and potential third-party legal agreements.
4.1 In addition to ensuring that the development is not at risk of flooding from external sources, it is also important to ensure that the scheme itself does not exacerbate flood risk for others. It is therefore essential that the arrangements for storm and foul water disposal are fully assessed to guarantee that the effects are mitigated and that there will be no impact on the existing land drainage regime.

Surface Water Drainage Strategy

4.2 All of the recent guidance on the arrangements for storm water disposal from new developments has encouraged the application of a hierarchy for surface water disposal. This has now been formalised in the Building Regulations Part H. The hierarchy is also the basis of the advice on surface water disposal recommended by Bedford Borough Council, in their role as Lead Local Flood Authority (LLFA) in the BBC publication, 'Supplementary Planning Document for Sustainable Drainage Systems (February 2018).
4.3 The first choice for surface water disposal which should be pursued is via infiltration. Only where it has been determined that the ground conditions are not suitable should the second choice of disposal to a ditch and/ or watercourse be considered. If there is no alternative the third and last choice of disposal to the public sewer can be considered.

Method of Surface Water Discharge

Infiltration
3.39 Infiltration testing was carried out onsite by PGE for 7 trial pits in accordance with the BRE 365 methodology. The results indicate that significant infiltration was not noted within any of these trial pits.
3.40 It is therefore considered that the use of infiltration techniques such as traditional soakaways will not be suitable for surface water discharge at the proposed site. For full copies of the infiltration data and trial pit logs, see Appendix G.
3.41 It is also noted that there is an Affinity Water abstraction point immediately north west of the site, therefore infiltration is not appropriate in this area.

Ditch and/ or Watercourse

4.4 As previously mentioned, the nearest watercourse to the site is the River Colne, which is located over 0.5 km south west of the site.
4.5 The topographical survey identified existing sections of ditches adjacent to the site boundaries. However, the ditches are too shallow to be a feasible solution and they do not appear to have an outfall beyond the site.
4.6 In light of the above, it is therefore considered that surface water disposal to a ditch/watercourse will not be a feasible option.

Discharge to Public Sewer
4.7 In accordance with the hierarchy for surface water disposal, the next option to be explored is disposal to the public sewer.
4.8 It is therefore proposed to discharge surface water runoff from the development site to the existing Thames Water public surface sewer located in Bullens Green Lane, north east of the site.
4.9 Thames Water have already confirmed they would accept a connection to the public surface water sewer at MH1150 in Roestock Gardens, at a maximum rate of $9.3 \mathrm{l} / \mathrm{s}$ which is equivalent to the previously calculated QBAR rate. However, a new connection at this manhole would require crossing third party land. As such, Woods Hardwick have written to Thames Water, requesting a new point of connection at MH3010 in Bullens Green Lane, north east of the site. Their response is currently awaited. Copies of the correspondence with Thames Water are contained in Appendix J.
4.10 At the detailed design stage, the proposed surface water network will be designed and tested within the relevant software package, to ensure that surface water flows generated from the site will not exceed this prescribed rate during a 1 in 100 year plus 40% climate change rainfall event.

Discharge Strategy

Rainfall Data

4.11 The Flood Estimation Handbook (FEH) methodology has been used in order to determine the requirements of the drainage network.

Runoff Rate

4.12 The impermeable area of the site has been calculated from the Illustrative Sketch Layout. This impermeable area comprises surfaces occupied by the proposed houses, garages, private drives, the access roads including adjacent footpaths.

Attenuation Volume Requirement

4.13 The site is currently undeveloped, therefore the proposed development will generate an increase in impermeable area. Based upon the illustrative layout drawing submitted with the application, the proposed development would generate an impermeable area of 3.15ha.
4.14 Woods Hardwick recently contacted Thames Water, requesting confirmation that they would accept a new connection to the public sewer network in Bullens Green Lane, north east of the site. Their response is currently awaited.
4.15 Notwithstanding the above, a minimum rate of $5 \mathrm{l} / \mathrm{s}$ has been used for the storage calculations at this stage. This is considered to be a robust approach as the minimum rate is lower than the calculated QBAR rate for the site; $9.6 \mathrm{l} / \mathrm{s}$. A copy of the Greenfield Calculation is provided in Appendix K.
4.16 It is necessary to ensure that sufficient attenuation is provide to accommodate the runoff from 3.15 ha of impermeable surfacing during 1 in 100 -year ($+40 \%$ climate change) storm event. The drainage calculations demonstrate that the proposed attenuation basin is capable of accepting flows from the 100 year rainfall event, including 40% allowance for climate change.
4.17 It should be noted that the final discharge rate and storage volume requirement will be dependent upon the Thames Water's response and the final impermeable area. At the detailed design stage, calculations will be re-run and the strategy will be refined as necessary. Depending upon the final proposals it may therefore be necessary to provide additional storage volumes.

Method of Attenuation

4.18 In accordance with current guidelines and best practice, the Developer's best endeavours will be made to ensure that appropriate Sustainable Urban Drainage Systems (SuDS) are used wherever practicable. There are a number of primary methods available, the appropriateness of which has been considered and summarised in Table 4.1 below;

Table 4.1: SuDS Feasibility Consideration

SuDS System	Feasibility	Comments
Green Roofs	X	Cost is likely to adversely affect the scheme's viability.
Permeable Paving	\checkmark	Lined permeable paving is proposed within the private areas for surface water treatment.
Soakaways	X	Infiltration testing confirm that the use of soakaways is not viable for the proposed development.
Rainwater Harvesting	\checkmark	Feasible and will be utilised where practicable, although not accounted for within currently proposed drainage strategy or attenuation calculations.
Swales	\checkmark	Swales are proposed alongside to the main road for surface water treatment.
Attenuation Basin	\checkmark	An attenuation basin is currently proposed on this scheme to provide surface water storage and treatment.
Geo-cellular Storage Crates	X	Not currently proposed as the proposed attenuation basin offers a more sustainable solution.

4.19 Based upon the assessment above, which takes into account the topography of the site and the underlying conditions, it is proposed to provide surface water storage within the proposed attenuation basins. The attenuation basins, which will be placed at the north western extent of the site, will provide a total of $2092 \mathrm{~m}^{3}$ of surface water storage. The south western basin, will be constructed to a maximum depth of 1.5 m , whilst the north eastern basin is only 0.6 m deep and acts as an overflow for the main pond. Both basins will have side slopes of 1 in 3 and at 0.6 m depth, the north eastern basin is expected to be dry most of the time and will provide a multi-functional space.
4.20 In addition to the above, swales are proposed alongside the main road, and permeable paving within private areas for surface water treatment. These features are currently not accounted for within the drainage calculations. The Proposed Drainage Strategy Drawing and associated Flow Calculations are provided in Appendix L and M, respectively.

Surface Water Conveyance

4.21 Surface water runoff from the proposed impermeable areas will generally be routed towards the surface water pumping station in the northern extent of the site via a gravity fed piped network.
4.22 Two offline basins will be located in the north eastern extent of the site to provide surface water storage.
4.23 The swine road will drain 'over the edge' or via kerb outlets into the shallow swales alongside the carriageway.
4.24 From the pumping station, surface water flows will be pumped towards the existing public surface water sewer in Bullens Green Lane, north east of the site. The pumping station will also act as a flow control to ensure that discharge rates do not exceed the discharge rate prescribed by Thames Water.
4.25 As previously mentioned, the final discharge rate and storage volume will be dependent upon the Thames water's response and the final impermeable area. At the detailed design stage, the proposed surface water sewer network will be tested against a 1 in 100-year ($+40 \%$ climate change) rainfall event using the XP Solutions MicroDrainage or Flow software, where the discharge rate at the outfall position must be shown to not exceed the agreed rate.
4.26 Notwithstanding the above, the current calculations are based on a minimum rate of $5 \mathrm{l} / \mathrm{s}$, which is lower than the QBAR rate.

Surface Water Drainage Maintenance

4.27 The arrangements for further maintenance of the surface water drainage system needs to be fully considered and, in that respect, it is anticipated that the onsite piped drainage network would be adopted by Thames Water Services Ltd through a Section 104 Agreement (Water Industry Act 1991).
4.28 It is anticipated that the attenuation basins, swales and permeable paving will be maintained by a management company.
4.29 A summary of the likely maintenance requirements for the proposed drainage network is provided in Table 4.2 below.

Table 4.2: Recommended Maintenance for Swales / Attenuation Basins

Swales / Attenuation Basin		Rrequency
Monitoring	Responsibility	
To be visually inspected after heavy rainfall events to ensure they are free of debris and litter.	As required	Management Company
Amenity grass cutting at 35-50mm	Monthly	Management Company
Inspect and clear inlets, outlets, control structures		
and overflows	Monthly	Manced
Occasional Maintenance	As required	Management Company
Remove Leaf Accumulation	As required	
Remove sediments from inlets and structures	As required	Management Company
Remedial Work		
Inspect and repair damage to inlets, outlets, banks and overflows		

4.1 It should be noted that the maintenance schedule document should be considered indicative only. The frequency and type of maintenance tasks to be carried out should be reviewed as necessary to ensure that the schedule remains relevant to the nature and location of the proposed residential development.

Foul Water Drainage Strategy

4.39 A Pre-Planning Enquiry was submitted to Thames Water, requesting confirmation that the existing foul network to the north east of the site has sufficient capacity to accommodate the foul discharge from the proposed development, via a pumped connection to the public foul network in Bullens Green Lane, north east of the site. In their response dated $20^{\text {th }}$ August 2020, Thames Water confirmed that they would accept a new connection at MH3011 in Bullens Green Lane at 2.31/s.
4.40 A suitable foul sewer network to discharge the residential development, will be designed in accordance with Thames Water's adoptable standards, providing a direct point of connection between the development site and the agreed Thames Water foul outfall. Further details of this design will be provided at the detailed design stage.
4.41 In accordance with relevant drainage policy, Thames Water are obliged to accept foul water flows from a proposed development, subject to the site receiving planning consent. In anticipation that such a consent will be granted for the proposed residential scheme, it is expected that Thames Water will make the necessary arrangements to ensure that the required provision within their public foul sewer network and treatment works will be available at the time that the Applicant wishes to connect the site's foul sewers to the designated outfall.

Foul Water Drainage Maintenance

4.42 In anticipation that the proposed residential development will be connected to the Thames Water public foul sewer network; it is considered reasonable to expect that Thames Water Services will act in their full capacity as the wastewater provider for the local area, to ensure that maintenance of their public sewers will be carried out as required from the point at which the existing private sewer outfalls connect to the public sewer network.

Summary and Conclusion

Woods Hardwick

Page Deliberately Blank.

Summary and Conclusions

The following paragraphs summarise the findings of this Flood Risk Assessment and Drainage Strategy. Details of foul and surface water outfalls, SuDS features and legal agreements are also provided.

5.1 This Flood Risk Assessment (FRA) and Drainage Strategy has been prepared by Woods Hardwick Infrastructure LLP on behalf of Canton Ltd; in support of an Outline Planning Application for a proposed residential development comprising up to 100 residential dwellings on a site known as 'Land off Bullens Green Lane, Colney Heath'.
5.2 The site comprises an area of approximately 5.25 ha and is shown on the EA's Flood map for planning as lying within Flood Zone 1.
5.3 All potential sources of flooding to the proposed development have been considered and it has been demonstrated that the site will not be at any significant risk of flooding. Access and egress to the site will be maintained during extreme storm events.
5.4 It has been demonstrated that the proposed development will not exacerbate the risk of flooding to third parties either upstream or downstream from the site.
5.5 The Surface Water Drainage Strategy has been developed in accordance with the hierarchy for sustainable surface water disposal. The results from the intrusive ground investigation confirm that the underlying soil conditions are not suitable for infiltration techniques. Conveyance of surface water to the nearest ditch or watercourse was also considered; however, the adjacent ditches do not appear to have an outfall beyond the site. As such, in this particular instance it is considered more appropriate to discharge surface water runoff from the development site to the existing Thames water public sewer located in Bullens Green Lane, north east of the site.
5.6 Thames Water have already confirmed they would accept a connection to the public surface water sewer at MH1150 in Roestock Gardens, at a maximum rate of $9.3 \mathrm{l} / \mathrm{s}$ which is equivalent to the previously calculated QBAR rate. However, a new connection at this manhole would require crossing third party land. As such, Woods Hardwick have written to Thames Water, requesting a new point of connection at MH3010 in Bullens Green Lane, north east of the site. Their response is currently awaited.
5.7 At this stage, a minimum rate of $5 \mathrm{l} / \mathrm{s}$ has been used for the storage calculations. This is considered to be a robust approach as the minimum rate is lower than the calculated QBAR rate for the site; $9.6 \mathrm{l} / \mathrm{s}$. However, it should be noted that the final discharge rate and storage volume requirement will be dependent upon the Thames Water's response and the final impermeable area. At the detailed design stage, calculations will be re-run and the strategy will be refined as necessary. Depending upon the final proposals it may therefore be necessary to provide additional storage volumes.
5.8 Surface water runoff from the site will generally be routed towards the surface water pumping station in the northern extent of the site via a gravity fed piped network. From here, surface water flows will be pumped towards the existing public surface water sewer in Bullens Green Lane, north east of the site. Two offline basins will be located in the north eastern extent of the site to provide surface water storage. In addition, swales are proposed alongside the main road, and permeable paving within private areas for surface water treatment.
5.9 It is proposed to discharge the site's foul flows, via a pumped connection, to the public foul network in Bullens Green Lane, north east of the site.
5.10 At the detailed design stage, a suitable foul sewer network will be designed to demonstrate the conveyance of foul flows to the designated Thames Water foul outfall. Following the detailed design of this sewer network, an appropriate means of connection to the public sewer will be progressed via a Section 106 (Water Industry Act 1991) Agreement. In turn, the adoption of any element of proposed foul sewer will be offered for Thames Water adoption will be progressed via a Section 104 (Water Industry Act 1991) Agreement.
5.11 From the information provided within this report, it is concluded that there is no reason in terms of drainage or flood risk why the residential development proposed at 'Land off Bullen's Green Lane, Colney Heath'; should not be fully supported through the planning process.

Appendix A
 Site Location Plan

notes
Contractors must theck ald dimensisnon on ste, only figurd eported to the architect or Engineer beforo Proceceding.

Woods Hardwick

BEDFord : head office	Birmungham
15.17 Goldingston Road	Fort Uunlop, Fort Pari
Beetford MK40 3 3H	Birmingham B249FE
T: +44 (0) 1234288882	121629

1411234238882

Fort Dunlop, Fort Parkw
Birmininham 224 4 Ez

Appendix B

Topographic Survey

Appendix C
 Existing Drainage Plan

rev descration				don	Dat
\square PRELIMINARY\square CONSTRUCTION		$\begin{aligned} & \square \text { INFORMATION } \\ & \square \text { AS BUILT } \end{aligned}$		\square tenor	
SCale	1:500 © A0		date	20.08.2020	
Drawn	${ }^{\text {rk }}$		снк		
dramme no.	18770.FEL-5-200		${ }_{\text {rev }}$		
TTLE	Land North of Fellows Lane Colney Heath				
detals	Existing Drainage Plan				

Woods Hardwick

Appendix D

Illustrative Sketch Layout

Key:
0
Existing Trees \& RPA
Existing Listed Building
Denotes Existing 'walked route
a)d Denotes Existing Drainage

Denotes Existing HV Cable
PR/L// Proposed Landscape Buffer
3 Proposed Trees
Proposed Green Space
Denc.
TI Proposed Location of New Pump Station
Proposed Location of New Pump
Denotes Key/Focal Buildings

D R A F T

Woods Hardwick

BEDFord : HeAd office	BIRMNGHAM
15-17 Goldington Road	Fort Dunlop, Fort Parknay
Bedfiord MK40 3NH	Birmingham 8249 FE
T: $\ddagger+4$ (0) 123426888	$\mathrm{T}:+44$ (0)

Appendix E
 Environment Agency - Flood Map for Planning

Flood map for planning

Your reference	Location (easting/northing)	Created
$\mathbf{1 8 7 7 0}$	521199/205881	12 Jul 2020 23:47

Your selected location is in flood zone 1, an area with a low probability of flooding.

This means:

- you don't need to do a flood risk assessment if your development is smaller than 1 hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1 hectare or affected by other sources of flooding or in an area with critical drainage problems

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

The Open Government Licence sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

Appendix F

Environment Agency - Surface Water Flood Map

Extent of flooding from surface water
High Medium \bigcirc Low \bigcirc Verylow

Appendix G

Paddock Geo Engineering Site Investigation Report
Extracts

PADDOCK

Land off Fellows Lane, Colney Heath, Hertfordshire, AL4 0QQ

GROUND INVESTIGATION

Canton Ltd

July 2020

P20-164gi

Milton Keynes: The Log Cabin, Manor Farm, Whaddon Road, Newton Longville, Milton Keynes, MK17 OAU Swindon/Oxford: 21 Tyrell Close, Stanford in the Vale, Oxon, SN7 8EY

T: 44 (0) 1908764032
M: 44 (0) 7377422528
E: matt@paddockgeoengineering.co.uk
W: www.paddockgeoengineering.co.uk

PADDOCK

Exploratory Point Location Plan

Land off Fellows Lane, Colney Heath, Hertforshire, AL4 0QQ.

Canton Ltd
July 2020

- Infiltration testing

Locations
Trial Pit Locations
Window Sample
Borehole Locations

Not to scale. All positions are approximate. Based on proposed plan provided by the client.

Remarks		
No groundwater encountered. Trial pit sides remained stable upon completion. Infiltration testing undertaken.		
Scale (approx)	Logged By $1: 25$	Figure No. P20-164.SA5

Field Data

Linear extrapolated values for calculation

Location: SA1
Weather: Overcast
Engineer: MC
Date: 17/06/2020
Strata Tested Weathered Lowestoft Formation

CALCULATION:

Soil Infiltration Rate $(\mathrm{f})=$ Vp75-25 / (ap50 x tp75-25)

Where:
Vp75-25 = effective storage volume between 75\% and 25\% effective depth
$1.3 \times 0.35 \times(1.65-1.15)$

$$
=0.2275
$$

ap50 $=$ internal area of TP upto
50% effective depth + base of TP $2(1.3 x)+2(0.35 x)+(1.3 \times 0.35)$ $=2.105$

Tp75-25 = the time for water level to fall from $75 \%-25 \%$ effective depth

$$
\begin{aligned}
= & \ggg \gg \mathrm{secs} \\
f= & \mathrm{N} / \mathrm{A}
\end{aligned}
$$

Comment

Insufficient infiltration over three hours Soakaway Failed

Client: Canton Ltd
Project No: P20-164
Project: Land off Fellows Lane,
Colney Heath, Hertfordshire,
AL4 0QQ

Field Data

Time	Time Elapsed (min)	Time Elapsed (sec)	Depth of Water below GL (m)
11:20	0.0	0	0.50
11:26	6.0	360	0.50
12:10	50.0	3000	0.52
14:20	180.0	10800	0.56

Linear extrapolated values for calculation

Location: SA2
Weather: Overcast
Engineer: MC
Date: 17/06/2020
Strata Tested Weathered Lowestoft Formation

CALCULATION:

Soil Infiltration Rate(f) $=$
Vp75-25 / (ap50 x tp75-25)
Where:
Vp75-25 = effective storage
volume between 75% and 25%
effective depth
$1.3 \times 0.35 \times(1.25-0.75)$
$=0.2275$
ap50 $=$ internal area of TP upto
50% effective depth + base of TP
$2(1.3 x)+2(0.35 x)+(1.3 \times 0.35)$
$=2.105$
Tp75-25 = the time for water level to fall from 75\%-25\% effective depth

```
    = >>>> secs
    f= N/A
        m/s
```


Comment

Insufficient infiltration over three hours Soakaway Failed

Client: Canton Ltd
Project No: P20-164
Project: Land off Fellows Lane,
Colney Heath, Hertfordshire,
AL4 0QQ

Field Data

Linear extrapolated values for calculation

Location: SA3
Weather: Overcast
Engineer: MC
Date: 17/06/2020
Strata Tested Weathered Lowestoft Formation

CALCULATION:

Soil Infiltration Rate(f) =
Vp75-25 / (ap50 x tp75-25)
Where:
Vp75-25 = effective storage
volume between 75% and 25% effective depth $1.3 \times 0.35 \times(1.25-0.75)$
$=0.2275$
ap50 $=$ internal area of TP upto
50% effective depth + base of TP
$2(1.3 x)+2(0.35 x)+(1.3 \times 0.35)$
$=2.105$
Tp75-25 = the time for water level to fall from 75\%-25\% effective depth

```
    = >>>> secs
    f= N/A m/s
```


Comment

Insufficient infiltration three hours - Soakaway Failed

Client: Canton Ltd
Project No: P20-164
Project: Land off Fellows Lane,
Colney Heath, Hertfordshire,
AL4 0QQ

Field Data

[^0]Location: SA4
Weather: Overcast
Engineer: MC
Date: 17/06/2020
Strata Tested Weathered Lowestoft Formation

CALCULATION:

Soil Infiltration Rate(f) $=$
Vp75-25 / (ap50 x tp75-25)
Where:
Vp75-25 = effective storage
volume between 75% and 25% effective depth $1.3 \times 0.35 \times(1.75-1.25)$

$$
=0.2275
$$

ap50 $=$ internal area of TP upto 50% effective depth + base of TP $2(1.3 x)+2(0.35 x)+(1.3 \times 0.35)$ $=2.105$

Tp75-25 = the time for water level to fall from 75\%-25\% effective depth

$$
\begin{aligned}
= & \ggg \gg \text { secs } \\
f= & N / A
\end{aligned}
$$

Comment

Insufficient infiltration over two hours Soakaway Failed

Client: Canton Ltd
Project No: P20-164
Project: Land off Fellows Lane,
Colney Heath, Hertfordshire,
AL4 0QQ

Field Data

Linear extrapolated values for calculation

Location: SA5
Weather: Overcast
Engineer: MC
Date: 17/06/2020
Strata Tested Weathered Lowestoft Formation

CALCULATION:

Soil Infiltration Rate(f) $=$
Vp75-25 / (ap50 x tp75-25)
Where:
Vp75-25 = effective storage
volume between 75% and 25% effective depth $1.3 \times 0.35 \times(1.25-0.75)$
$=0.2275$
ap50 $=$ internal area of TP upto
50% effective depth + base of TP
$2(1.3 x)+2(0.35 x)+(1.3 \times 0.35)$
$=2.105$
Tp75-25 = the time for water level to fall from 75\%-25\% effective depth

$$
\begin{array}{rl}
& =\text { >>>> secs } \\
f=N / A & \mathrm{~m} / \mathrm{s}
\end{array}
$$

Comment

Insufficient infiltration over two hours Soakaway Failed

Client: Canton Ltd
Project No: P20-164
Project: Land off Fellows Lane,
Colney Heath, Hertfordshire,
AL4 0QQ

Field Data

[^1]Location: SA6
Weather: Overcast
Engineer: MC
Date: 17/06/2020
Strata Tested Weathered Lowestoft Formation

CALCULATION:

Soil Infiltration Rate(f) $=$
Vp75-25 / (ap50 x tp75-25)
Where:
Vp75-25 = effective storage
volume between 75% and 25%
effective depth
$1.3 \times 0.35 \times(1.825-1.475)$

$$
=0.15925
$$

ap50 $=$ internal area of TP upto 50% effective depth + base of TP $2(1.3 x)+2(0.35 x)+(1.3 \times 0.35)$ $=\quad 1.61$

Tp75-25 = the time for water level to fall from 75\%-25\% effective depth

```
        = >>>> secs
    f= N/A
```

 m/s

Comment

Insufficient infiltration over three hours Soakaway Failed

Client: Canton Ltd
Project No: P20-164
Project: Land off Fellows Lane,
Colney Heath, Hertfordshire,
AL4 0QQ

Field Data

Time	Time Elapsed (min)	Time Elapsed (sec)	Depth of Water below GL (m)
14:15	0.0	0	0.50
14:16	1.0	60	0.50
14:18	3.0	180	0.50
14:25	10.0	600	0.50
14:35	20.0	1200	0.50
14:58	43.0	2580	0.50
15:27	72.0	4320	0.50
16:18	123.0	7380	0.50

[^2]Location: SA7
Weather: Overcast
Engineer: MC
Date: 17/06/2020
Strata Tested Weathered Lowestoft Formation

CALCULATION:

Soil Infiltration Rate(f) $=$
Vp75-25 / (ap50 x tp75-25)
Where:
Vp75-25 = effective storage
volume between 75% and 25% effective depth $1.3 \times 0.35 \times(1.25-0.75)$
$=0.2275$
ap50 $=$ internal area of TP upto 50% effective depth + base of TP $2(1.3 x)+2(0.35 x)+(1.3 \times 0.35)$ $=2.105$

Tp75-25 = the time for water level to fall from 75\%-25\% effective depth

$$
\begin{aligned}
& =\text { >>>> secs } \\
f & =N / A \quad \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Comment

Insufficient infiltration over two hours Soakaway Failed

Client: Canton Ltd
Project No: P20-164
Project: Land off Fellows Lane,
Colney Heath, Hertfordshire,
AL4 0QQ

Appendix H

Thames Water - Wastewater Plan and Manhole Records

Woods Hardwick Ltd
BEDFORD
MK40 3NH

Search address supplied Roundhouse Farm
Bullen's Green Lane
North Mymms
Welwyn Hatfield
Hertfordshire
AL4 0QT

Your reference

Our reference

18770_Colney Heath
ALS/ALS Standard/2020_4193250

Search date

12 June 2020

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd
Property Searches, PO Box 3189, Slough SL1 4WW
DX 151280 Slough 13
searches@thameswater.co.uk
www.thameswater-propertysearches.co.uk

08450709148

Asset location search

Search address supplied: Roundhouse Farm, Bullen's Green Lane, North Mymms, Welwyn Hatfield, Hertfordshire, AL4 0QT

Dear Sir / Madam
An Asset Location Search is recommended when undertaking a site development.It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers \& the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 08450709148 , or use the address below:

Thames Water Utilities Ltd
Property Searches
PO Box 3189
Slough
SL1 4WW
Email: searches@thameswater.co.uk
Web: www.thameswater-propertysearches.co.uk

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:
TL2006SE
TL2105NW
TL2106SW
TL2005NE
Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Following examination of our statutory maps, Thames Water has been unable to find
any plans of water mains within this area. If you require a connection to the public water supply system, please write to:

New Connections / Diversions
Thames Water
Network Services Business Centre
Brentford
Middlesex
TW8 0EE
Tel:
08458502777
Fax: 02077133858
Email: developer.services@thameswater.co.uk

The following quartiles have not been printed as they are out of Thames' water catchment area. For details of the assets requested please contact the water company indicated below:

TL2006SE	Affinity Water
TL2105NW	Affinity Water
TL2106SW	Affinity Water
TL2005NE	Affinity Water

Affinity Water Ltd
Tamblin Way
Hatfield
AL10 9EZ
Tel: 03453572401
For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Asset location search

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 08459200800 . Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water)
Thames Water
Clearwater Court
Vastern Road
Reading
RG1 8DB
Tel: 08000093921
Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water)
Thames Water
Clearwater Court
Vastern Road
Reading
RG1 8DB
Tel: 08000093921
Email: developer.services@thameswater.co.uk

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
9000	74.2	72.1
5100	75.01	69.58
6201	74.89	69.67
6200	73.74	69.83
7350	72.31	69.18
7301	72.28	69.92
8350	72.84	70.16
7300	72.33	70.51
8300	74.18	70.94
9350	74.61	71.14
9300	74.6	71.35
941 A	n/a	n/a
7400	71.96	69.99

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.
Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

Manhole Reference	Manhole Cover Level	Manhole Invert Level
251A	n/a	n/a
1500	76.88	75.03
251B	n/a	n/a
1550	n/a	75.97
1501	76.54	74.59
1603	75.93	75.06
1602	75.74	75.14
1601	75.78	75.24
1600	75.77	75.27
1650	75.9	74.9
1701	75.88	75.33
1700	75.88	75.38
$171 A$	n/a	n/a
0751	75.82	74.47
0700	76.01	74.56
0701	75.89	74.44
0702	75.78	74.34
0704	75.99	74.98
$071 A$	n/a	$7 / a$
0703	76.06	74.82
$071 B$	n/a	n/a
$061 A$	n/a	n/a
0750	76	74.98
0600	75.72	75.07
0601	75.73	74.99
0602	75.76	74.91
0500	76.37	74.31
1608	76.34	74.6
1502	76.31	74.41
1610	75.75	74.85
1651	75.72	74.82
1607	75.79	74.58
1609	76.42	74.84
1606	75.77	74.54
1652	n/a	74.89
1605	75.79	74.94
1604	75.89	
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not		
shown but their presence should be anticipated. No		
of mainsility of any kind whatsocerer is ancepted by Thames water for any error or omission. The actual position		

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4200	79.57	76.7
2105	75.71	74.56
2107	75.83	n/a
2106	75.75	74.59
2155	76.02	75.26
3009	77	74.57
3001	76.71	74.69
3106	76.97	76.51
3002	76.7	74.8
3105	76.87	76.33
311B	n/a	n/a
3104	76.76	75.93
3101	76.73	75.73
3102	76.88	75.88
3100	76.72	75.4
3103	76.79	75.9
3010	77.06	74.69
3151	77.12	76.07
3150	76.91	76.11
3050	77.1	76.32
3107	77.38	76.23
3108	77.35	76.4
3109	77.38	76.51
3110	77.5	76.57
3111	77.69	76.73
3251	77.07	76.21
321A	n/a	n/a
3252	77.09	76.22
3207	77.42	75.82
2204	75.55	74.57
2205	75.56	74.73
2203	75.43	74.28
3206	77.26	76.65
2201	75.33	73.76
2206	75.78	75.01
3205	77.12	76.49
2207	76.63	75.87
3204	77.17	76.38
3203	77.02	76.17
2251	75.28	n/a
2208	76.55	75
3250	77.32	76.54
3202	77.04	76.04
3201	77.01	75.96
4250	79.32	76.61
3200	76.95	75.68
3302	76.74	75.51
3350	76.64	75.29
3301	76.83	74.63
3300	76.33	73.95
2351	76.5	73.85
2350	75.34	72.51
1301	75.57	72.52
2300	n/a	n/a
3351	77.28	75.38
3451	77.08	75.82
3450	n/a	n/a
3015	77.35	76.33
3014	77.37	76.15
3013	77.51	76.1
2004	75.09	74.27
2003	75	74.18
2005	75.16	74.39
2002	74.98	74.13
1007	75.57	74.83
3008	76.89	76.29
1012	74.83	73.94
3007	76.86	76.1
1006	74.68	73.9
3006	76.95	76.07
3012	77.14	75.24
3005	76.96	75.95
3004	76.96	75.92
1010	74.58	73.48
1005	74.55	73.85
1050	74.61	73.69
2006	74.93	73.78
1004	74.49	73.76
1003	74.39	73.74
1002	74.6	73.62
1102	74.06	72.68
111H	n/a	n/a
1150	74.3	73.5
1000	74.35	73.05
111F	n/a	n/a
111E	n/a	n/a
111D	n/a	n/a
1106	74.57	73.75
1104	74.83	73.5
111B	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
111A	n/a	n/a
1009	75.01	73.96
111G	n/a	n/a
2100	74.88	73.92
2150	74.78	73.98
2108	74.93	74.15
2151	75	74.21
2109	75.21	74.16
2000	75.15	74.25
2200	75.3	74.33
2102	75.02	74.15
2001	75.18	74.4
2103	75.08	74.15
2153	75.24	74.24
2104	75.51	74.41
2154	75.5	74.82
2152	75.69	74.86
001D	n/a	n/a
001A	n/a	n/a
001B	n/a	n/a
001C	n/a	n/a
0000	74.08	72.36
1100	73.96	72.56
1152	n/a	n/a
1151	74.08	73.28
1101	n/a	n/a
1300	75.3	72.4
0300	74.32	71.87
0350	73.65	71.45
3011	76.94	74.97
301A	n/a	n/a
311C	n/a	n/a
311A	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
8950	74.46	73.94
8900	74.18	71.81
9853	75.48	74.54
9851	75.62	74.06
9850	75.35	74.31
8851	75.46	73.87
881A	n/a	n/a
9804	75.33	73.16
881B	n/a	n/a
8801	75.4	73.05
8803	n/a	n/a
9803	75.19	73.36
9805	75.26	73.86
8850	75.29	74.2
991G	n/a	n/a
991H	n/a	n/a
8902	75.13	72.02
991F	n/a	n/a
9950	74.85	74.24
891C	n/a	n/a
991E	n/a	n/a
891B	n/a	n/a
9951	74.72	74.06
8901	74.85	71.65
991D	n/a	n/a
991C	n/a	n/a
991B	n/a	n/a
991A	n/a	n/a
891A	n/a	n/a
5801	73.08	70.25
581A	n/a	n/a
5800	73.35	70.56
6800	73.62	72.26
681A	n/a	n/a
6752	73.82	72.22
6700	74.03	71.37
6751	74.09	72.14
6701	74.66	70.94
6753	n/a	n/a
6750	74.75	73.27
7751	74.99	73.74
7701	74.92	72.07
7702	75.25	73.5
7801	75.1	73.9
7852	75.24	74.18
7850	74.97	74.12
7800	75	71.29
7752	74.98	74.45
7851	75.42	74.4
7802	75.47	73.41
7754	75.11	73.58
8754	75.31	73.79
8702	75.41	73.71
8852	n/a	n/a
8800	75.42	72.78
9702	76.1	75.04
9705	76.05	74.91
9703	76.07	74.93
9706	76.06	74.81
9707	76.06	74.59
9704	76.04	74.64
9708	75.91	74.24
8700	75.56	74.36
8752	75.38	73.18
8701	75.56	74.04
9751	76	74.02
8751	75.54	73.48
8750	75.69	73.74
9700	75.61	74.42
9709	75.85	73.77
9750	75.9	74.18
9854	75.78	74.38
9800	75.88	73.93
9801	75.73	73.64
9852	75.57	74.26
9802	75.69	73.6
C123	70.64	67.13
CC123	71.73	67.17
CC124	71.65	67.29
C124	71.61	67.27
7753	75.08	74.06
7750	75.56	74.3
7700	75.42	72.42
8703	75.35	73.85
8601	74.49	72.63
8753	75.46	72.98
871B	n/a	n/a
871A	n/a	n/a
8600	75.64	72.97
9754	75.54	73.4

Manhole Reference	Manhole Cover Level	Manhole Invert Level
9602	75.84	74.67
9601	75.99	75.06
9701	76.07	75.27
9753	75.8	73.83
9752	76.05	73.86
9600	76.25	73.65
961 A	n/a	n/a
581C	n/a	n/a
581B	n/a	

Public Sewer Types (Operated \& Maintained by Thames Water)
--- Foul: A sewer designed to convey waste water from domestic and industrial sources to a treatment works.

- - - - Surface Water: A sewer designed to convey surface water (e.g. rain water from roofs, yards and car parks) to rivers or watercourses.Combined: A sewer designed to convey both waste water and surface water from domestic and industrial sources to a treatment works.
$=-\mathrm{O}=-\quad$ Trunk Surface Water
 Trunk Foul

-. Storm Relief Trunk Combined
$-\quad \mathrm{P}$ Vent Pipe

--
 Bio-solids (Sludge)

$\downarrow>$ Proposed Thames Surface Water Sewer
$\downarrow>$ Proposed Thames Water Foul Sewer
\longmapsto - Gallery -__- Foul Rising Main Main
\qquad Combined Rising Main

Sludge Rising Main
RL-_ Proposed Thames Water Rising Main

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve

】 Dam Chase

- Fitting
Σ Meter
© Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example A hydrobrake limits the flow passing downstream.

Control Valve	
需	Ancillary

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

- Outfall

I- Undefined End
Inlet
6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole unsure about any text or symbology present on the plan, please contact a member of Property Insight on 08450709148.

Notes:

1) All levels associated with the plans are to Ordnance Datum Newlyn.
2) All measurements on the plans are metric.
3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
5) 'na' or '0' on a manhole level indicates that data is unavailable.

Other Symbols

Symbols used on maps which do not fall under other general categories
A / Public/Private Pumping Station

Invert Level
Summit

Areas

Lines denoting areas of underground surveys, etc.

Operational Site

TunnelConduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)
Combined Sewer

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
5. In case of dispute TWUL`s terms and conditions shall apply.
6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 08003169800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 01213451000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 08450709148	Account number 90478703	By calling your bank and	Made payable to 'Thames
number starting CBA or	Sort code 60-00-01	Account number	Write your Thames Water
ADS / OSS	A remittance advice must be sent to:	90478703 Sort code 60-00-01	account number on the back
	Thames Water Utilities	and your invoice number	Send to:
	Ltd., PO Box 3189,		Thames Water Utilities
	Slough SL1 4WW.		Ltd., PO Box 3189,
	or email		Slough SL1 4WW
	ps.billing@thameswater.		or by DX to 151280

Thames Water Utilities Ltd Registered in England \& Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Appendix I

Environment Agency - Reservoir Flood Map

Extent of flooding from reservoirs

Maximum extent of flooding

Appendix J

Thames Water Correspondence

20 Aug. 20

Pre-planning enquiry: Confirmation of sufficient capacity

Dear Miss Katsoulis
Thank you for providing information on your development: Roundhouse Farm, Colney Heath, Bullen's Green Lane, North Mymms, Welwyn Hatfield, Hertfordshire, AL4 0QT.

Residential development comprising 100 units. Foul water to be pumped into MH3011 at 2.31//s. Surface water to be attenuated to the greenfield rate 9.31/s and discharged into MH1150.

We're pleased to confirm that there will be sufficient foul and surface water capacity in our sewerage network to serve your development, so long as your phasing follows the timescale you've suggested.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

Source Protection Zone

The development site boundary falls within a Source Protection Zone for groundwater abstraction. These zones may be at particular risk from polluting activities on or below the land surface. To prevent pollution, the Environment Agency and Thames Water (or other local water undertaker) will use a tiered, risk-based approach to regulate activities that may impact groundwater resources, this may potentially affect your drainage or surface water strategies where infiltration systems are proposed. The applicant is encouraged to read the Environment Agency's approach to groundwater protection (available at https://www.gov.uk/government/publications/
groundwater-protection-position-statements) and may wish to discuss the full implications for their development with a suitably qualified environmental consultant.

You'll need to keep us informed of any changes to your design - for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

What happens next?
Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on 02035778082.
Yours sincerely

Artur Jaroma
Thames Water

Yolanda Kwaramba

From:	Yolanda Kwaramba
Sent:	20 August 2020 10:42
To:	'DEVELOPER.SERVICES@THAMESWATER.CO.U'
Cc:	John Freeman
Subject:	FW: RE: RE: RE: RE: RE: FW: Thames Water Pre-Planning Enquiry Request. TW ref.
	DS6075257 [Filed 20 Aug 2020 14:20]
Attachments:	DS6075257 PDEV AL4 0QT Roundhouse Farm.pdf; 18.08.2020 Greenfield
	Calculation.PNG

Artur,
Further to our telephone conversation, please could you revise your response taking into account the following;

1. Preferred surface water point of connection - MH3010 in Bullens Green Lane.
2. The QBAR rate is $9.6 \mathrm{l} / \mathrm{s}$ based on a site area of 5.25 ha - see attached calculation.

I look forward to hearing from you soon.
Many thanks.

From: DEVELOPER.SERVICES@THAMESWATER.CO.U DEVELOPER.SERVICES@THAMESWATER.CO.UK
Sent: 20 August 2020 09:50
To: Jasmine Katsoulis j.katsoulis@WoodsHardwick.com
Subject: RE: RE: RE: RE: RE: RE: FW: Thames Water Pre-Planning Enquiry Request. TW ref. DS6075257

Dear Sir/Madam

Following your Pre-Planning Enquiry for the above site, please find our formal response enclosed.

Please note, Thames Water do not envisage any capacity concerns to the waste water infrastructure at this stage of your development.

Should you have any further queries, please do not hesitate to contact me again.

Kind Regards

Artur Jaroma
Developer Services - Sewer Adoptions Engineer
Office: 08000093921
Mobile: 07747647276

Get advice on making your sewer connection correctly at connectright.org.uk
Clearwater Court, Vastern Road, Reading, RG1 8DB
Find us online at developers.thameswater.co.uk

Original Text

Appendix K

Greenfield Calculations

IH 124

Return Period Flood

Enter Retum Period between 1 and 1000

Appendix L

Proposed Drainage Strategy

Appendix M
Drainage Calculations

AUSEAT	Woods Hardwick Ltd	File: 18770 OUTLINE APP SWS. Network: Storm Network 1 John Freeman $20 / 08 / 2020$	Page 1

Rainfall Methodology	FEH-99
Return Period (years)	100
Additional Flow (\%)	40
C (1km)	-0.029
D1 $(1 \mathrm{~km})$	0.300
D2 $(1 \mathrm{~km})$	0.302
D3 (1km)	0.294
E (1km)	0.324
F(1km)	2.454
CV	0.750

Design Settings
Time of Entry (mins) 6.00
Maximum Time of Concentration (mins) 30.00
Maximum Rainfall (mm/hr) 50.0 Minimum Velocity (m/s) 1.00 Connection Type Level Soffits
Minimum Backdrop Height (m) 0.200
Preferred Cover Depth (m) 1.200
Include Intermediate Ground
Enforce best practice design rules \checkmark

Nodes

Name	Area (ha)	Tof E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.102	6.00	75.500	1200	521186.287	205760.078	1.500
2	0.000		75.500	1200	521194.056	205764.144	1.552
3	0.100	6.00	75.492	1350	521199.897	205765.339	1.729
18	0.133	6.00	75.276	1350	521160.812	205822.575	1.575
19	0.000		75.698	1350	521192.336	205812.006	2.195
4	0.191	6.00	75.809	1500	521199.897	205810.705	2.577
20	0.102	6.00	75.800	1200	521262.129	205837.776	1.425
21	0.095	6.00	75.797	1200	521266.210	205850.397	1.501
5	0.066	6.00	75.236	1500	521217.365	205866.193	2.273
6	0.000		75.000	1500	521224.373	205888.455	2.089
7	0.043	6.00	75.000	1800	521223.408	205901.064	2.192
22	0.278	6.00	75.504	1350	521166.496	205895.913	1.575
8	0.000		74.944	1800	521214.333	205919.481	2.182
9	0.018	6.00	75.018	1800	521212.514	205926.227	2.270
23	0.089	6.00	76.000	1200	521290.517	205922.086	1.500
24	0.094	6.00	75.980	1350	521294.862	205935.646	1.640
25	0.000		75.583	1350	521256.954	205947.794	1.575
26	0.000		75.467	1350	521246.550	205948.409	1.575
27	0.128	6.00	75.342	1350	521234.203	205945.549	1.650
28	0.023	6.00	75.208	1350	521222.068	205939.864	1.650
10	0.000		75.107	1800	521214.321	205933.750	2.374
11	0.064	6.00	74.845	1800	521199.220	205944.285	2.149
12	0.000		74.800	1800	521190.659	205962.357	2.144
29	0.000	6.00	74.500	1800	521139.727	205976.078	1.500
30	0.103	6.00	74.700	1800	521153.158	205964.357	1.800
31	0.040	6.00	74.700	1800	521165.217	205973.998	1.831
13	0.000		74.800	1800	521189.355	205972.213	2.365
14	0.000		74.809	1800	521194.505	205981.642	2.395
15	0.047	6.00	74.911	1800	521201.709	205984.839	2.513
32	0.157	6.00	75.300	1200	521247.550	205994.839	1.500
16	0.000		75.151	1800	521220.488	205988.936	2.791
17	0.000		75.200	1800	521222.762	205978.513	2.86

| WASEAN Hardwick Ltd | File: 18770 OUTLINE APP SWS.
 Network: Storm Network 1
 John Freeman
 $20 / 08 / 2020$ | Page 2 |
| :--- | :--- | :--- | :--- |

Name	US Node	$\begin{aligned} & \text { DS } \\ & \text { Node } \end{aligned}$	Length (m)	$\begin{gathered} \mathrm{ks}(\mathrm{~mm}) / \\ \mathrm{n} \end{gathered}$	$\begin{aligned} & \text { US IL } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \text { DS IL } \\ (\mathrm{m}) \end{gathered}$	Fall (m)	Slope (1:X)	$\begin{gathered} \text { Dia } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{T} \text { of C } \\ \text { (mins) } \end{gathered}$	$\begin{gathered} \text { Rain } \\ (\mathrm{mm} / \mathrm{hr}) \end{gathered}$
1.000	1	2	8.769	0.600	74.000	73.948	0.052	168.0	300	6.12	50.0
1.001	2	3	5.962	0.600	73.948	73.913	0.035	168.0	300	6.20	50.0
1.002	3	4	45.366	0.600	73.763	73.382	0.381	119.1	450	6.61	50.0
2.000	18	19	33.249	0.600	73.701	73.503	0.198	168.0	375	6.40	50.0
2.001	19	4	7.672	0.600	73.503	73.457	0.046	168.0	375	6.49	50.0
1.003	4	5	58.173	0.600	73.232	73.038	0.194	300.0	600	7.30	50.0
3.000	20	21	13.264	0.600	74.375	74.296	0.079	168.0	225	6.22	50.0
3.001	21	5	51.336	0.600	74.296	73.413	0.883	58.1	225	6.72	50.0
1.004	5	6	23.339	0.600	72.963	72.911	0.052	450.0	675	7.62	50.0
1.005	6	7	12.646	0.600	72.911	72.883	0.028	450.0	675	7.79	50.0
1.006	7	8	20.531	0.600	72.808	72.762	0.046	450.0	750	8.05	50.0
4.000	22	8	53.328	0.600	73.929	73.137	0.792	67.3	375	6.40	50.0
1.007	8	9	6.987	0.600	72.762	72.748	0.014	500.0	750	8.14	50.0
1.008	9	10	7.737	0.600	72.748	72.733	0.015	500.0	750	8.25	50.0
5.000	23	24	14.239	0.600	74.500	74.415	0.085	168.0	300	6.20	50.0
5.001	24	25	39.807	0.600	74.340	74.008	0.332	119.9	375	6.60	50.0
5.002	25	26	10.422	0.600	74.008	73.892	0.116	89.8	375	6.69	50.0
5.003	26	27	12.674	0.600	73.892	73.767	0.125	101.4	375	6.81	50.0
5.004	27	28	13.401	0.600	73.692	73.558	0.134	100.0	450	6.92	50.0
5.005	28	10	9.869	0.600	73.558	73.457	0.101	97.7	450	7.00	50.0
1.009	10	11	18.413	0.600	72.733	72.696	0.037	500.0	750	8.49	50.0
1.010	11	12	19.997	0.600	72.696	72.656	0.040	500.0	750	8.76	50.0
1.011	12	13	9.942	0.600	72.656	72.435	0.221	45.0	750	8.80	50.0
6.000	29	30	17.826	0.600	73.000	72.900	0.100	178.3	750	6.14	50.0
6.001	30	31	15.439	0.600	72.900	72.869	0.031	500.0	750	6.35	50.0
6.002	31	13	24.204	0.600	72.869	72.585	0.284	85.2	750	6.48	50.0
1.012	13	14	10.744	0.600	72.435	72.414	0.021	500.0	750	8.95	50.0
1.013	14	15	7.882	0.600	72.414	72.398	0.016	500.0	750	9.05	50.0
1.014	15	16	19.221	0.600	72.398	72.360	0.038	500.0	750	9.31	50.0
7.000	32	16	27.698	0.600	73.800	73.635	0.165	168.0	300	6.38	50.0
1.015	16	17	10.668	0.600	72.360	72.339	0.021	500.0	750	9.45	50.0

Pipeline Schedule										
Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	$\begin{aligned} & \text { DS IL } \\ & (\mathrm{m}) \end{aligned}$	DS Depth (m)
1.000	8.769	168.0	300	Circular_Default Sewer Type	75.500	74.000	1.200	75.500	73.948	1.252
1.001	5.962	168.0	300	Circular_Default Sewer Type	75.500	73.948	1.252	75.492	73.913	1.279
1.002	45.366	119.1	450	Circular_Default Sewer Type	75.492	73.763	1.279	75.809	73.382	1.977
2.000	33.249	168.0	375	Circular_Default Sewer Type	75.276	73.701	1.200	75.698	73.503	1.820
2.001	7.672	168.0	375	Circular_Default Sewer Type	75.698	73.503	1.820	75.809	73.457	1.977
1.003	58.173	300.0	600	Circular_Default Sewer Type	75.809	73.232	1.977	75.236	73.038	1.598
3.000	13.264	168.0	225	Circular_Default Sewer Type	75.800	74.375	1.200	75.797	74.296	1.276

Link	US Node	Dia $(\mathbf{m m})$	Node Type	MH Type	DS Node	Dia $(\mathbf{m m})$	Node Type Manhole	MH Type
$\mathbf{1 . 0 0 0}$	$\mathbf{1}$	1200	Manhole	Adoptable				
1.001	$\mathbf{2}$	1200	Manhole	Adoptable	$\mathbf{2}$	1200	1350	Manhole
Adoptable								
$\mathbf{1 . 0 0 2}$	$\mathbf{3}$	1350	Manhole	Adoptable	4	1500	Manhole	Adoptable
$\mathbf{2 . 0 0 0}$	$\mathbf{1 8}$	1350	Manhole	Adoptable	$\mathbf{1 9}$	1350	Manhole	Adoptable
$\mathbf{2 . 0 0 1}$	$\mathbf{1 9}$	1350	Manhole	Adoptable	$\mathbf{4}$	1500	Manhole	Adoptable
$\mathbf{1 . 0 0 3}$	$\mathbf{4}$	1500	Manhole	Adoptable	5	1500	Manhole	Adoptable
$\mathbf{3 . 0 0 0}$	$\mathbf{2 0}$	1200	Manhole	Adoptable	$\mathbf{2 1}$	1200	Manhole	Adoptable

CAUSEAY	Woods Hardwick Ltd	File: 18770 OUTLINE APP SWS. Network: Storm Network 1 John Freeman $20 / 08 / 2020$	Page 3

Link	Length (m)	Slope (1:X)	$\begin{gathered} \text { Dia } \\ (\mathrm{mm}) \end{gathered}$	Link Type			$\begin{aligned} & \text { US CL } \\ & \text { (m) } \end{aligned}$	$\begin{aligned} & \text { US IL } \\ & (\mathrm{m}) \end{aligned}$	US Depth (m)	DS CL (m)	$\begin{aligned} & \text { DS IL } \\ & (\mathrm{m}) \end{aligned}$	DS Depth (m)
3.001	51.336	58.1	225	Circular_Default Sewer Type			75.797	74.296	1.276	75.236	73.413	1.598
1.004	23.339	450.0	675	Circular_Default Sewer Type			75.236	72.963	1.598	75.000	72.911	1.414
1.005	12.646	450.0	675	Circular_Default Sewer Type			75.000	72.911	1.414	75.000	72.883	1.442
1.006	20.531	450.0	750	Circular_Default Sewer Type			75.000	72.808	1.442	74.944	72.762	1.432
4.000	53.328	67.3	375	Circular_Default Sewer Type			75.504	73.929	1.200	74.944	73.137	1.432
1.007	6.987	500.0	750	Circular_Default Sewer Type			74.944	72.762	1.432	75.018	72.748	1.520
1.008	7.737	500.0	750	Circular_Default Sewer Type			75.018	72.748	1.520	75.107	72.733	1.624
5.000	14.239	168.0	300	Circular_Default Sewer Type			76.000	74.500	1.200	75.980	74.415	1.265
5.001	39.807	119.9	375	Circular_Default Sewer Type			75.980	74.340	1.265	75.583	74.008	1.200
5.002	10.422	89.8	375	Circular_Default Sewer Type			75.583	74.008	1.200	75.467	73.892	1.200
5.003	12.674	101.4	375	Circular_Default Sewer Type			75.467	73.892	1.200	75.342	73.767	1.200
5.004	13.401	100.0	450	Circular_Default Sewer Type			75.342	73.692	1.200	75.208	73.558	1.200
5.005	9.869	97.7	450	Circular_Default Sewer Type			75.208	73.558	1.200	75.107	73.457	1.200
1.009	18.413	500.0	750	Circular_Default Sewer Type			75.107	72.733	1.624	74.845	72.696	1.399
1.010	19.997	500.0	750	Circular_Default Sewer Type			74.845	72.696	1.399	74.800	72.656	1.394
1.011	9.942	45.0	750	Circular_Default Sewer Type			74.800	72.656	1.394	74.800	72.435	1.615
6.000	17.826	178.3	750	Circular_Default Sewer Type			74.500	73.000	0.750	74.700	72.900	1.050
6.001	15.439	500.0	750	Circular_Default Sewer Type			74.700	72.900	1.050	74.700	72.869	1.081
6.002	24.204	85.2	750	Circular_Default Sewer Type			74.700	72.869	1.081	74.800	72.585	1.465
1.012	10.744	500.0	750	Circular_Default Sewer Type			74.800	72.435	1.615	74.809	72.414	1.645
1.013	7.882	500.0	750	Circular_Default Sewer Type			74.809	72.414	1.645	74.911	72.398	1.763
1.014	19.221	500.0	750	Circular_Default Sewer Type			74.911	72.398	1.763	75.151	72.360	2.041
7.000	27.698	168.0	300	Circular_Default Sewer Type			75.300	73.800	1.200	75.151	73.635	1.216
1.015	10.668	500.0	750	Circular_Default Sewer Type			75.151	72.360	2.041	75.200	72.339	2.111
		Link	US Node	$\begin{gathered} \text { Dia } \\ (\mathrm{mm}) \end{gathered}$	Node Type	$\begin{gathered} \text { MH } \\ \text { Type } \end{gathered}$	DS Node	$\begin{gathered} \text { Dia } \\ (\mathrm{mm}) \end{gathered}$	Node Type	$\begin{gathered} \text { MH } \\ \text { Type } \end{gathered}$		
		3.001	21	1200	Manhole	Adoptable	5	1500	Manhole	Adoptab		
		1.004	5	1500	Manhole	Adoptable	6	1500	Manhole	Adoptab		
		1.005	6	1500	Manhole	Adoptable	7	1800	Manhole	Adoptab		
		1.006	7	1800	Manhole	Adoptable	8	1800	Manhole	Adoptab		
		4.000	22	1350	Manhole	Adoptable	8	1800	Manhole	Adoptab		
		1.007	8	1800	Manhole	Adoptable	9	1800	Manhole	Adoptab		
		1.008	9	1800	Manhole	Adoptable	10	1800	Manhole	Adoptab		
		5.000	23	1200	Manhole	Adoptable	24	1350	Manhole	Adoptab		
		5.001	24	1350	Manhole	Adoptable	25	1350	Manhole	Adoptab		
		5.002	25	1350	Manhole	Adoptable	26	1350	Manhole	Adoptab		
		5.003	26	1350	Manhole	Adoptable	27	1350	Manhole	Adoptab		
		5.004	27	1350	Manhole	Adoptable	28	1350	Manhole	Adoptab		
		5.005	28	1350	Manhole	Adoptable	10	1800	Manhole	Adoptab		
		1.009	10	1800	Manhole	Adoptable	11	1800	Manhole	Adoptab		
		1.010	11	1800	Manhole	Adoptable	12	1800	Manhole	Adoptab		
		1.011	12	1800	Manhole	Adoptable	13	1800	Manhole	Adoptab		
		6.000	29	1800	Manhole	Adoptable	30	1800	Manhole	Adoptab		
		6.001	30	1800	Manhole	Adoptable	31	1800	Manhole	Adoptab		
		6.002	31	1800	Manhole	Adoptable	13	1800	Manhole	Adoptab		
		1.012	13	1800	Manhole	Adoptable	14	1800	Manhole	Adoptab		
		1.013	14	1800	Manhole	Adoptable	15	1800	Manhole	Adoptab		
		1.014	15	1800	Manhole	Adoptable	16	1800	Manhole	Adoptab		
		7.000	32	1200	Manhole	Adoptable	16	1800	Manhole	Adoptab		
		1.015	16	1800	Manhole	Adoptable	17	1800	Manhole	Adoptab		

Pipeline Schedule

CAUSEMA	Woods Hardwick Ltd	File: 18770 OUTLINE APP SWS. Network: Storm Network 1 John Freeman $20 / 08 / 2020$	Page 4

Manhole Schedule

Node	Easting (m)	Northing (m)	$\begin{aligned} & \mathrm{CL} \\ & (\mathrm{~m}) \end{aligned}$	Depth (m)	$\begin{aligned} & \text { Dia } \\ & (\mathrm{mm}) \end{aligned}$	Connections	Link	$\begin{aligned} & \text { IL } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \text { Dia } \\ (\mathrm{mm}) \end{gathered}$
1	521186.287	205760.078	75.500	1.500	1200				
						0	1.000	74.000	300
2	521194.056	205764.144	75.500	1.552	1200	1	1.000	73.948	300
						0	1.001	73.948	300
3	521199.897	205765.339	75.492	1.729	1350		1.001	73.913	300
						0	1.002	73.763	450
18	521160.812	205822.575	75.276	1.575	1350				
						0	2.000	73.701	375
19	521192.336	205812.006	75.698	2.195	1350	1	2.000	73.503	375
						0	2.001	73.503	375
4	521199.897	205810.705	75.809	2.577	1500		2.001	73.457	375
						2	1.002	73.382	450
						0	1.003	73.232	600
20	521262.129	205837.776	75.800	1.425	1200	5			
						0	3.000	74.375	225
21	521266.210	205850.397	75.797	1.501	1200	1	3.000	74.296	225
							3.001	74.296	225
5	521217.365	205866.193	75.236	2.273	1500	1	3.001	73.413	225
						2	1.003	73.038	600
						0	1.004	72.963	675
6	521224.373	205888.455	75.000	2.089	1500	1	1.004	72.911	675
7	521223.408	205901.064	75.000	2.192	1800	1	1.005	72.883	675
						0	1.006	72.808	750
22	521166.496	205895.913	75.504	1.575	1350				
						0	4.000	73.929	375
8	521214.333	205919.481	74.944	2.182	1800	1	4.000	73.137	375
						2	1.006	72.762	750
						20	1.007	72.762	750

AUSEAT	Woods Hardwick Ltd	File: 18770 OUTLINE APP SWS. Network: Storm Network 1 John Freeman $20 / 08 / 2020$	Page 5

Manhole Schedule

Node	Easting (m)	Northing (m)	$\begin{aligned} & \mathrm{CL} \\ & (\mathrm{~m}) \end{aligned}$	Depth (m)	$\begin{gathered} \text { Dia } \\ (\mathrm{mm}) \end{gathered}$	Connections	Link	$\begin{aligned} & \text { IL } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \text { Dia } \\ (\mathrm{mm}) \end{gathered}$
9	521212.514	205926.227	75.018	2.270	1800		1.007 1.008	72.748 72.748	750 750
23	521290.517	205922.086	76.000	1.500	1200				
						0	5.000	74.500	300
24	521294.862	205935.646	75.980	1.640	1350		5.000	74.415	300
							5.001	74.340	375
25	521256.954	205947.794	75.583	1.575	1350	$1$$0$	5.001	74.008	375
							5.002	74.008	375
26	521246.550	205948.409	75.467	1.575	1350		5.002	73.892	375
							5.003	73.892	375
27	521234.203	205945.549	75.342	1.650	1350		5.003	73.767	375
							5.004	73.692	450
28	521222.068	205939.864	75.208	1.650	1350		5.004	73.558	450
							5.005	73.558	450
10	521214.321	205933.750	75.107	2.374	1800		5.005	73.457	450
							1.008	72.733	750
							1.009	72.733	750
11	521199.220	205944.285	74.845	2.149	1800		1.009	72.696	750
							1.010	72.696	750
12	521190.659	205962.357	74.800	2.144	1800		1.010	72.656	750
							1.011	72.656	750
29	521139.727	205976.078	74.500	1.500	1800				
						0	6.000	73.000	750
30	521153.158	205964.357	74.700	1.800	1800		6.000	72.900	750
							6.001	72.900	750
31	521165.217	205973.998	74.700	1.831	1800	1	6.001	72.869	750
						0	6.002	72.869	750

CAUSEMA	Woods Hardwick Ltd	File: 18770 OUTLINE APP SWS. Network: Storm Network 1 John Freeman $20 / 08 / 2020$	Page 6

Manhole Schedule

Simulation Settings											
Rainfall Methodology			FEH-99	E (1km)			0.324	Skip Steady State			\checkmark
		C (1km)	-0.029		F (1km)		2.454	Drai	own	(mins)	240
		D1 (1km)	0.300		Summer CV		0.750	Additi	Stor	($\mathrm{m}^{3} / \mathrm{ha}$)	20.0
		D2 (1km)	0.302		Winter CV		0.840	Che	Disch	Rate(s)	x
		D3 (1km)	0.294		Analysis Speed		Normal	Chec	ischa	Volume	x
Storm Durations											
15	30	60	120	180	240	360	- 480	600	720	960	1440
Return Period (years)				Climate Change (CC \%)		Additional Area(A \%)		Additional Flow (Q \%)			
			100		40			0			

Node 17 Online Pump Control

Flap Valve x
Replaces Downstream Link \checkmark Invert Level (m) 72.339

Design Depth (m)	1.750	Switch off depth (m)	0.100
Design Flow $(\mathrm{l} / \mathrm{s})$	5.0		
Switch on depth (m)	0.500		

Depth	Flow	Depth	Flow
(\mathbf{m})	$(1 / \mathrm{s})$	(\mathbf{m})	$(1 / \mathrm{s})$
0.001	5.000	2.800	5.000

CAUSEAN	Woods Hardwick Ltd	File: 18770 OUTLINE APP SWS. Network: Storm Network 1 John Freeman $20 / 08 / 2020$	Page 7

Node 29 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	73.000
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	

Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area (\mathbf{m})	$\left(\mathbf{m}^{2}\right)$	$\left(\mathbf{m}^{2}\right)$	(\mathbf{m})
$\left(\mathbf{m}^{2}\right)$	$\left(\mathbf{m}^{2}\right)$	(\mathbf{m})	Depth $\left(\mathbf{m}^{2}\right)$	Area $\left(\mathbf{m}^{2}\right)$	Inf Area (\mathbf{m})	$\left(\mathbf{m}^{2}\right)$	$\left(\mathbf{m}^{2}\right)$				

Node 18 Carpark Storage Structure

Base Inf Coefficient (m / hr)	0.00000	Invert Level (m)	74.436	Slope (1:X)	100.0
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	7	Depth (m)	
Safety Factor	2.0	Width (m)	10.000	Inf Depth (m)	0.600
Porosity	1.00	Length (m)	10.000		
Node 20 Carpark Storage Structure					
Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	74.960	Slope (1:X)	100.0
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	8	Depth (m)	
Safety Factor	2.0	Width (m)	10.000	Inf Depth (m)	0.600
Porosity	1.00	Length (m)	10.000		

Node 22 Carpark Storage Structure

Base Inf Coefficient $(\mathrm{m} / \mathrm{hr})$	0.00000	Invert Level (m)	74.664
Side Inf Coefficient $(\mathrm{m} / \mathrm{hr})$	0.00000	Time to half empty (mins)	5
Safety Factor	2.0	Width (m)	10.000
Porosity	1.00	Length (m)	10.000

$$
\begin{array}{rr}
\text { Slope (1:X) } & 100.0 \\
\text { Depth }(\mathrm{m}) & \\
\text { Inf Depth }(\mathrm{m}) & 0.600
\end{array}
$$

Node 23 Carpark Storage Structure

Base Inf Coefficient $(\mathrm{m} / \mathrm{hr})$	0.00000
Side Inf Coefficient $(\mathrm{m} / \mathrm{hr})$	0.00000
Safety Factor	2.0
Porosity	1.00

```
    Invert Level (m) 75.160
Time to half empty (mins) 0
                                Width (m) 10.000
                                Length (m) 10.000
```


Node 32 Carpark Storage Structure

Base Inf Coefficient $(\mathrm{m} / \mathrm{hr})$	0.00000
Side Inf Coefficient $(\mathrm{m} / \mathrm{hr})$	0.00000
Safety Factor	2.0
Porosity	1.00

```
            Invert Level (m) 74.460
Time to half empty (mins)
                                Width (m) 10.000
                                Length (m) 10.000
```

```
    Slope (1:X) 100.0
    Depth (m)
Inf Depth (m) 0.600
```

AUSEAT	Woods Hardwick Ltd	File: 18770 OUTLINE APP SWS. Network: Storm Network 1 John Freeman $20 / 08 / 2020$	Page 8

Results for 100 year +40\% CC Critical Storm Duration. Lowest mass balance: 56.80\%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (1/s)	Node $\mathrm{Vol}\left(\mathrm{m}^{3}\right)$	Flood $\left(m^{3}\right)$	Status
15 minute winter	1	10	75.500	1.500	97.2	3.7365	1.4148	FLOOD
15 minute winter	2	10	75.405	1.457	90.2	1.6479	0.0000	FLOOD RISK
15 minute summer	3	10	75.332	1.569	180.0	4.0615	0.0000	FLOOD RISK
15 minute winter	18	14	75.168	1.467	307.1	72.7454	0.0000	FLOOD RISK
15 minute winter	19	13	75.118	1.615	180.0	2.3113	0.0000	SURCHARGED
15 minute summer	4	10	75.176	1.944	349.2	6.3168	0.0000	SURCHARGED
15 minute winter	20	16	75.464	1.089	149.0	48.2323	0.0000	SURCHARGED
15 minute winter	21	15	75.434	1.138	90.6	2.7278	0.0000	SURCHARGED
15 minute summer	5	10	75.054	2.091	384.6	4.9095	0.0000	FLOOD RISK
15 minute winter	6	10	75.000	2.089	352.0	3.6913	7.3093	FLOOD
15 minute summer	7	10	74.974	2.166	345.0	6.3605	0.0000	FLOOD RISK
15 minute winter	22	14	75.230	1.301	314.6	58.0977	0.0000	FLOOD RISK
15 minute winter	8	11	74.944	2.182	546.3	5.5532	4.0423	FLOOD
15 minute summer	9	11	74.930	2.182	536.2	5.8974	0.0000	FLOOD RISK
15 minute winter	23	13	75.361	0.861	97.5	17.0819	0.0000	SURCHARGED
15 minute winter	24	12	75.326	0.986	149.6	2.5419	0.0000	SURCHARGED
15 minute winter	25	11	75.197	1.189	134.7	1.7020	0.0000	SURCHARGED
15 minute winter	26	11	75.161	1.269	137.0	1.8163	0.0000	SURCHARGED
15 minute winter	27	11	75.121	1.429	211.7	4.2612	0.0000	FLOOD RISK
15 minute winter	28	11	75.017	1.459	232.7	2.4949	0.0000	FLOOD RISK
15 minute winter	10	10	74.915	2.182	765.5	5.5536	0.0000	FLOOD RISK
15 minute summer	11	10	74.845	2.149	770.8	6.7479	9.1366	FLOOD
15 minute summer	12	10	74.792	2.136	778.8	5.4369	0.0000	FLOOD RISK
600 minute winter	29	585	74.111	1.111	100.3	1221.0760	0.0000	SURCHARGED
15 minute summer	30	10	74.651	1.751	1056.8	6.4579	0.0000	FLOOD RISK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow ($1 / \mathrm{s}$)	Velocity (m/s)	Flow/Cap	$\begin{gathered} \text { Link } \\ \operatorname{Vol}\left(m^{3}\right) \end{gathered}$	Discharge $\operatorname{Vol}\left(m^{3}\right)$
15 minute winter	1	1.000	2	90.2	1.282	1.055	0.6175	
15 minute winter	2	1.001	3	90.6	1.287	1.060	0.4198	
15 minute summer	3	1.002	4	180.9	1.438	0.611	7.1879	
15 minute winter	18	2.000	19	-180.3	-1.635	-1.170	3.6673	
15 minute winter	19	2.001	4	-180.0	-1.632	-1.168	0.8462	
15 minute summer	4	1.003	5	262.2	1.228	0.662	16.3860	
15 minute winter	20	3.000	21	70.0	1.760	1.751	0.5275	
15 minute winter	21	3.001	5	72.0	1.851	1.053	2.0417	
15 minute summer	5	1.004	6	329.6	1.029	0.750	8.3315	
15 minute winter	6	1.005	7	355.2	0.997	0.808	4.5143	
15 minute summer	7	1.006	8	350.7	0.797	0.605	9.0361	
15 minute winter	22	4.000	8	192.3	2.170	0.788	5.8819	
15 minute winter	8	1.007	9	550.5	1.251	1.001	3.0751	
15 minute summer	9	1.008	10	541.2	1.230	0.985	3.4052	
15 minute winter	23	5.000	24	116.2	1.650	1.359	1.0027	
15 minute winter	24	5.001	25	134.7	1.597	0.737	4.3906	
15 minute winter	25	5.002	26	137.0	1.490	0.649	1.1495	
15 minute winter	26	5.003	27	139.3	1.436	0.701	1.3979	
15 minute winter	27	5.004	28	212.7	1.532	0.658	2.1233	
15 minute winter	28	5.005	10	233.9	1.777	0.715	1.5637	
15 minute winter	10	1.009	11	769.4	1.748	1.399	8.1039	
15 minute summer	11	1.010	12	778.8	1.770	1.417	8.8011	
15 minute summer	12	1.011	13	785.1	1.784	0.425	4.3757	
600 minute winter	29	6.000	30	-100.3	-0.413	-0.108	7.8456	
15 minute summer	30	6.001	31	-987.6	-2.244	-1.796	6.7950	

CAUSEMA	Woods Hardwick Ltd	File: 18770 OUTLINE APP SWS. Network: Storm Network 1 John Freeman $20 / 08 / 2020$	Page 9

Results for 100 year $+\mathbf{4 0 \%}$ CC Critical Storm Duration. Lowest mass balance: 56.80\%

BEDFORD : HEAD OFFICE	BIRMINGHAM	ONLINE
15-17 Goldington Road	Fort Dunlop, Fort Parkway	mail@woodshardwick.com
Bedford MK40 3NH	Birmingham B24 9FE	woodshardwick.com
$\mathrm{T}:+44$ (0) 1234 268862	$\mathrm{T}:+44(0) 01216297784$	

[^0]:
 Linear extrapolated values for calculation

[^1]:
 Linear extrapolated values for calculation

[^2]: Linear extrapolated values for calculation

